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Introduction

Consider learning from examples (xt, yt) ∈ X × R(t ∈ N), drawn at
random from a probability measure ρ on X × R. For λ > 0, one wants
to approximate the function f∗

λ minimizing over f ∈ H the quadratic
functional ∫

X×Y
(f(x)− y)2dρ+ λ∥f∥2H ,

where H is some Hilbert space. In this presentation we explore a
scheme for doing this is given by using one example at a time t to
update to ft the current hypothesis ft−1 which depends only on the
previous examples.
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Main Goal

The main goal in this presentation is to showcase an online algorithm
in Hilbert spaces and cover Kernel Methods. By choosing a quadratic
functional to optimize one is able to give a deeper understanding of
this online learning phenomenon.
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Kernels

What even is a kernel?

Let X be a nonempty set, sometimes referred to as the index set. A
symmetric function K : X × X → R is called a positive-definite (p.d.)
kernel on X if

n∑
i=1

n∑
j=1

cicjK (xi, xj) ≥ 0

Examples

The first is the Gaussian kernel K : Rn × Rn → R defined by

K (x, x′) = exp
(
−∥x− x′∥2 /c2

)
(c > 0). The second is the linear

kernel K : Rn × Rn → R defined by K (x, x′) = ⟨x, x′⟩+ 1. The
restriction of these functions on X ×X will induce the corresponding
kernels on subsets of Rn.
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Kernel Trick
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Kernel’s and PDE

The most well-known heat kernel is the heat kernel of d-dimensional
Euclidean space Rd, which has the form of a time varying Gaussian
function,

K(t, x, y) = exp(t∆)(x, y) =
1

(4πt)d/2
e−∥x−y∥2/4t

(
x, y ∈ Rd, t > 0

)
This solves the heat equation

∂K

∂t
(t, x, y) = ∆xK(t, x, y)
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Reproducing Kernel Hilbert Space (RKHS)

Let HK be RKHS associated with a Mercer kernel K.

How do we even construct this space?

Proof. For all x in X, define Kx = K(x, ·). Let H0 be the linear span
of {Kx : x ∈ X}. Define an inner product on H0 by〈

n∑
j=1

bjKyj ,

m∑
i=1

aiKxi

〉
H0

=

m∑
i=1

n∑
j=1

aibjK (yj , xi) ,

which implies K(x, y) = ⟨Kx,Ky⟩H0
. The inner product is symmetric.

Let H be the completion of H0 with respect to this inner product.
Then H consists of functions of the form

f(x) =

∞∑
i=1

aiKxi(x) where lim
n→∞

sup
p≥0

∥∥∥∥∥
n+p∑
i=n

aiKxi

∥∥∥∥∥
H0

= 0.
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RKHS Construction (Con’t)

Reproducing Property and Uniqueness

Now we can check the reproducing property:

⟨f,Kx⟩H =

∞∑
i=1

ai ⟨Kxi ,Kx⟩H0
=

∞∑
i=1

aiK (xi, x) = f(x).

To prove uniqueness, let G be another Hilbert space of functions for
which K is a reproducing kernel. For every x and y in X, (2) implies
that

⟨Kx,Ky⟩H = K(x, y) = ⟨Kx,Ky⟩Q .

By linearity, ⟨·, ·⟩H = ⟨·, ·⟩G on the span of {Kax : x ∈ X}. Then
H ⊂ G because G is complete and contains H0 and hence contains its
completion. Then it is easy to show that every element of G is in H
which implies that f = fH and concludes the proof.
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Online Learning Algorithm

Algorithm in RKHS

Given a sequence of examples zt = (xt, yt) ∈ X × Y (t ∈ N)

ft+1 = ft−γt ((ft (xt)− yt)Kxt + λft) , for some f1 ∈ HK , e.g. f1 = 0,

where

for each t ∈ N, (xt, yt) is drawn identically and independently
according to ρ,

the regularization parameter λ ≥ 0 and the step size γt > 0.
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Quadratic Map

Consider a Hilbert space (W ) with inner product ⟨,⟩. Consider the
quadratic map V : W → R given by

V (w) =
1

2
⟨Aw,w⟩+ ⟨B,w⟩+ C

where A : W → W is a positive definite bounded linear operator whose
inverse is bounded, i.e.

∥∥A−1
∥∥ < ∞, B ∈ W and C ∈ R. Then the

gradient gradV : W → W is given by

gradV (w) = Aw +B.

V has a unique minimal point w∗ ∈ W such that
gradV (w∗) = Aw∗ +B = 0, i.e.

w∗ = −A−1B.
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Coercivity condition

Coercive Operators

A self-adjoint operator A : H → H, where H is a real Hilbert space, is
called coercive if there exists a constant c > 0 such that

⟨Ax, x⟩ ≥ c∥x∥2

for all x in H

Norm-Coercive mappings

A mapping f : X → X ′ between two normed vector spaces (X, ∥ · ∥)
and (X ′, ∥ · ∥′) is called norm-coercive iff ∥f(x)∥′ → +∞ as ∥x∥ → +∞

Then we get that

∥V (w)∥ = ∥1
2
⟨Aw,w⟩+ ⟨B,w⟩+ C∥ ≥ ∥1

2
c∥w∥2 − ∥B∥∥w∥2 + C∥
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Stochastic Gradient Descent

Algorithm in RKHS

Our concern is to find an approximation of this point, when A,B and
C are random variables on a space Z.

wt+1 = wt − γt gradV (wt) , for t = 1, 2, 3, . . .

with γt a positive step size. For each example z, the stochastic gradient
of Vz, gradVz : W → W is given by the affine map
gradVz(w) = A(z)w +B(z), with A(z), B(z) denoting the values of
random variables A,B at z ∈ Z.
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Rewritten equation

Thus the above equation then becomes: For t = 1, 2, 3, . . ., let zt be a
sample sequence and define an update by

wt+1 = wt − γt (Atwt +Bt) , for some w1 ∈ W

where

zt ∈ Z(t ∈ N) are drawn independently and identically according
to ρ;

the step size γt > 0

For each t ∈ N, let At = A (zt) and Bt = B (zt).
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Fréchet Derivative

Let V and W be normed vector spaces, and U ⊆ V be an open subset
of V . A function f : U → W is called Fréchet differentiable at x ∈ U if
there exists a bounded linear operator A : V → W such that

lim
∥h∥→0

∥f(x+ h)− f(x)−Ah∥W
∥h∥V

= 0.

The limit here is meant in the usual sense of a limit of a function
defined on a metric space, using V and W as the two metric spaces,
and the above expression as the function of argument h in V . As a
consequence, it must exist for all sequences ⟨hn⟩∞n=1 of non-zero
elements of V that converge to the zero vector hn → 0. Equivalently,
the first-order expansion holds, in Landau notation

f(x+ h) = f(x) +Ah+ o(h).

If there exists such an operator A, it is unique, so we write Df(x) = A
and call it the Fréchet derivative of f at x.
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Specific Potential Map

Consider the Hilbert space W = HK . For fixed z = (x, y) ∈ Z, take the
following quadratic potential map V : HK → R defined by

Vz(f) =
1

2

{
(f(x)− y)2 + λ∥f∥2K

}
.

Recall that the gradient of Vz is a map gradVz : HK → HK such that
for all g ∈ HK ,

⟨gradVz(f), g⟩K = DVz(f)(g)

where the Fréchet derivative at f,DVz(f) : HK → R is the linear
functional such that for h ∈ HK ,

lim
∥h∥→0

|Vz(f + h)− Vz(f)−DVz(f)(h)|
∥g∥

= 0.

Hence

DVz(f)(h) = (f(x)− y)h(x) + λ⟨f, g⟩K = ⟨(f(x)− y)Kx + λf, h⟩K ,

where the last step is due to the reproducing property h(x) = ⟨g,Kx⟩K .
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Proposition

Final Algorithm

Let gradVz(f)− (f(x)− y)Kx + λf . Taking f = ft and
(x, y) = (xt, yt), by ft+1 = ft − γt gradVzt (ft), we have

ft+1 = ft − γt ((ft (xt)− yt)Kxt + λft) ,

which establishes the equation as shown previously. [SY06]
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Thanking Remarks

Thank you to Professor Mohammad Ali Niksirat for this wonderful
opportunity to present this research topic and for teaching this course.
Thank you to everyone present here and for coming to my
presentation. Merry Christmas and have a great winter break ahead!
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