
Chapter 7

Zeta(2k)

How do we dervive the ζ(2k) where k ∈ N using fourier analysis?

Introduction

Recap: We start with some periodic function.

Periodic :f(x+ p) = f(x)∀x where p is fixed called a period of f(x).
A continous periodic function can be expressed as an infinite series

f(x) =
a0
2

+
∞∑
n=1

ancos(
2πnx

p
) + bnsin(

2πnx

p
)

where

an =
2

p

∫
I

f(x)cos(
2πnx

p
)dx(n ≥ 0)

and

an =
2

p

∫
I

f(x)sin(
2πnx

p
)dx(n ≥ 0)

where I is any interval of length p.

Bernoulli polynomials

Usual definition: Lets look at the case of the usual way how the bernoulli’s
polynomail is defined

(text)

(et − 1)
=
∞∑
n=0

Bn(x)
tn

n!

23



24 CHAPTER 7. ZETA(2K)

Question : We might wonder why is this a good description of the
bernoulis number.

Another ideas is to work towards another description of the Bn(x)

� Let

pn(x) =
1

n!
Bn(x)

then
(text)

(et − 1)
=
∞∑
n=0

pn(x)tn

Proposition 1:

� po(x) = 1

� pn+1(x)′ = pn(x))∀n ≥ 0

� pn(0) = pn(1)∀n ≥ 2

Proof:

� 1) This is clear from the defining relation

� 2) We differentiate the defining relation with respect to x:

(t2ext)

(et − 1)
=
∞∑
n=0

p′n(x)tn

=
∞∑
n=1

p′n(x)tn

because p′(x) = 0. Dividing both sides by t and using the defining
relation again, we obtain

∞∑
n=0

pn(x)tn =
∞∑
n=1

p′n(x)tn−1

=
∞∑
n=0

p′n+1(x)tn

so pn+1(x)′ = pn(x))∀n ≥ 0
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� 3)
∞∑
n=0

pn(1)tn =
(tet)

(et − 1)

=
(tet − 1) + t

(et − 1)

= t+
t

(et − 1)

= t+
∞∑
n=0

pn(0)tn

But we can do better that is to change it i.e:

� po(x) = 1

� pn+1(x)′ = pn(x))∀n ≥ 0

�

∫ 1

0
pn(x)dx = 0∀n ≥ 1

Note also that it is obvious that properties (1)’, (2)’, and (3)’ define a
family of polynomials pn(x)n≥0. One could therefore use these proper-
ties to define the pn(x).

Proposition 2:

That is ∀n ≥ 0
pn(1− x) = (−1)n(pn(x))

Proof
∞∑
n=0

pn(1− x)tn =
(te(1−x)t)

(et − 1)

=
(tete−xt)

(et − 1)

=
(−ue−ueux)
(e−u − 1)

where u = -t

=
(ueux)

(eu − 1)
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=
∞∑
n=0

pn(x)un

=
∞∑
n=0

(−1)npn(x)tn

Reminder : Bn(x) = n!pn(x) scaled to be monic

Let fn : R → R be the periodic function of period 1 agreeing with the
polynomial pn(x) on [0, 1). Note that, if n ≥ 2, then

pn(1)− pn(0) =

∫ 1

0

pn−1(x)dx = 0

so fn is continuous on R.

We will compute the fourier series of pn(x) where n is even .More precisely
we extend pn(x) to a periodic function fn such that

fn(x) = pn(x)

if 0 ≤ x < 1 ,

fn(x+ 1) = fn(x)∀x ∈ R

if

n 6= 1, fn(0) = pn(0) = pn(1) = fn(1)

therefore fn is continuous.

Lemma 3

If n ≥ 0 is even, then fn is an even function.

Proof :

Let {a} = a−bac denote the fractional part of a real number a, and note
that {−a} = 1 - {a} if a ∈ R− Z. Then if x ∈ R− Z,

fn(−x) = pn({−x})

= pn({1− x})

= pn({x})
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by Proposition 2
= fn(x)

Fourier Series

Let the fourier series of fn be

an,0
2

+
∞∑
m=1

(an,mcos(2πmx) + bn,msin(2πmx))

Lets calculate some terms

an,0 = 2

∫ 1

0

fn(x)dx = 2

∫ 1

0

pn(x)dx = 0∀n ≥ 1

Assume now that n ≥ 4 is even . If m ≥ 1

an,m = 2

∫ 1

0

fm(x)cos(2πmx)dx =

2

∫ 1

0

pn(x)cos(2πmx)dx =

2

2πm
[pn(x)sin(2πmx)]

∣∣∣∣1
0

− 2

2πm

∫ 1

0

pn−1(x)sin(2πmx)dx =

−2

2πm
− [

1

2πm
[pn−1(x)cox(2πmx)]

∣∣∣∣1
0

+

∫ 1

0

1

2πm
pn−2(x)cos(2πmx)dx =

2(
−1

2πm

2

)

∫ 1

0

pn−2(x)cos(2πmx)dx =

2(
1

2πim

2

)

∫ 1

0

pn−2(x)cos(2πmx)dx

Note that we introduce i here because it is algebraically expedient to do
so, not because it is necessary.
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By induction together with the fact that for all even n ≥ 2∫ 1

0

pn(x)cos(2πmx)dx

=
1

(2πim)n−2

(
1

2πm
)[p2(x)sin(2πmx)]

∣∣∣∣1
0

− 1

2πm

∫ 1

0

p1(x)sin(2πmx)dx

)

=
1

(2πim)n−2

(
−1

2πm

)(
−1

2πm
)[p1(x)cos(2πmx)]

∣∣∣∣1
0

+
1

2πm

∫ 1

0

cos(2πmx)dx

)

=
1

(2πim)n−2

(
−1

2πm

)(
−1

2πm
+ 0

)

=
1

(2πim)n

Thus ∫ 1

0

p2(x)cos(2πmx)dx = −(
1

2πim

2

)

an,m =
−2

(2πim)n

Now an,m = 0 when n is even and when n ≥ 4 and m ≥ 1, and the equality
holds when n = 2 as well. The remaining case where n = 2 and m = 0 is
immediate from the fact that pn(0) = pn(1) when n ≥ 2; specifically, an,0 = 0.
Hence, when n ≥ 2 is even. By fourier convergence

fn(x) =
∞∑
m=1

an,mcos(2πmx) =

∞∑
m=1

−2

(2πi)n
cos(2πmx)

mn

Hence now, as we have already remarked, fn is continuous when n 6= 1, so
we may evaluate the Fourier series at x = 0 to find that



29

fn(0) =
∞∑
m=1

−2

(2πim)n

as cos(0) = 1

−2

(2πi)n

∞∑
m=1

1

mn
=
−2

(2πi)n
ζ(n)

Rearranging gives us

ζ(n) =
−1

2
(2πi)nfn(0) =

−1

2
(2πi)npn(0) =

−1

2
(2πi)2k

B2k

2k!
=

(−1)k+1(2π)2kB2k

2(2k!)

where k = n
2
.

Hence Done
QED


