Chapter 7

Zeta(2k)

How do we dervive the $\zeta(2 k)$ where $k \in \mathbb{N}$ using fourier analysis?

Introduction

Recap: We start with some periodic function.
Periodic : $f(x+p)=f(x) \forall x$ where p is fixed called a period of $\mathrm{f}(\mathrm{x})$. A continous periodic function can be expressed as an infinite series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n x}{p}\right)+b_{n} \sin \left(\frac{2 \pi n x}{p}\right)
$$

where

$$
a_{n}=\frac{2}{p} \int_{I} f(x) \cos \left(\frac{2 \pi n x}{p}\right) d x(n \geq 0)
$$

and

$$
a_{n}=\frac{2}{p} \int_{I} f(x) \sin \left(\frac{2 \pi n x}{p}\right) d x(n \geq 0)
$$

where I is any interval of length p.

Bernoulli polynomials

Usual definition: Lets look at the case of the usual way how the bernoulli's polynomail is defined

$$
\frac{\left(t e^{x t}\right)}{\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}
$$

Question : We might wonder why is this a good description of the bernoulis number.

Another ideas is to work towards another description of the $B_{n}(x)$

- Let

$$
p_{n}(x)=\frac{1}{n!} B_{n}(x)
$$

then

$$
\frac{\left(t e^{x t}\right)}{\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} p_{n}(x) t^{n}
$$

Proposition 1:

- $p_{o}(x)=1$
- $\left.p_{n+1}(x)^{\prime}=p_{n}(x)\right) \forall n \geq 0$
- $p_{n}(0)=p_{n}(1) \forall n \geq 2$

Proof:

- 1) This is clear from the defining relation
- 2) We differentiate the defining relation with respect to x :

$$
\begin{gathered}
\frac{\left(t^{2} e^{x t}\right)}{\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} p_{n}^{\prime}(x) t^{n} \\
=\sum_{n=1}^{\infty} p_{n}^{\prime}(x) t^{n}
\end{gathered}
$$

because $p^{\prime}(x)=0$. Dividing both sides by t and using the defining relation again, we obtain

$$
\begin{gathered}
\sum_{n=0}^{\infty} p_{n}(x) t^{n}=\sum_{n=1}^{\infty} p_{n}^{\prime}(x) t^{n-1} \\
=\sum_{n=0}^{\infty} p_{n+1}^{\prime}(x) t^{n}
\end{gathered}
$$

so $\left.p_{n+1}(x)^{\prime}=p_{n}(x)\right) \forall n \geq 0$

- 3)

$$
\begin{gathered}
\sum_{n=0}^{\infty} p_{n}(1) t^{n}=\frac{\left(t e^{t}\right)}{\left(e^{t}-1\right)} \\
=\frac{\left(t e^{t}-1\right)+t}{\left(e^{t}-1\right)} \\
=t+\frac{t}{\left(e^{t}-1\right)} \\
=t+\sum_{n=0}^{\infty} p_{n}(0) t^{n}
\end{gathered}
$$

But we can do better that is to change it i.e:

- $p_{o}(x)=1$
- $\left.p_{n+1}(x)^{\prime}=p_{n}(x)\right) \forall n \geq 0$
- $\int_{0}^{1} p_{n}(x) d x=0 \forall n \geq 1$

Note also that it is obvious that properties (1)', (2)', and (3)' define a family of polynomials $p_{n}(x)_{n \geq 0}$. One could therefore use these properties to define the $p_{n}(x)$.

Proposition 2:

That is $\forall n \geq 0$

$$
p_{n}(1-x)=(-1)^{n}\left(p_{n}(x)\right)
$$

Proof

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{n}(& 1-x) t^{n}=\frac{\left(t e^{(1-x) t}\right)}{\left(e^{t}-1\right)} \\
& =\frac{\left(t e^{t} e^{-x t}\right)}{\left(e^{t}-1\right)} \\
& =\frac{\left(-u e^{-u} e^{u x}\right)}{\left(e^{-u}-1\right)}
\end{aligned}
$$

where $u=-t$

$$
=\frac{\left(u e^{u x}\right)}{\left(e^{u}-1\right)}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} p_{n}(x) u^{n} \\
= & \sum_{n=0}^{\infty}(-1)^{n} p_{n}(x) t^{n}
\end{aligned}
$$

Reminder : $B_{n}(x)=n!p_{n}(x)$ scaled to be monic
Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the periodic function of period 1 agreeing with the polynomial $p_{n}(x)$ on $[0,1)$. Note that, if $n \geq 2$, then

$$
p_{n}(1)-p_{n}(0)=\int_{0}^{1} p_{n-1}(x) d x=0
$$

so f_{n} is continuous on \mathbb{R}.
We will compute the fourier series of $p_{n}(x)$ where n is even .More precisely we extend $p_{n}(x)$ to a periodic function f_{n} such that

$$
f_{n}(x)=p_{n}(x)
$$

if $0 \leq x<1$,

$$
f_{n}(x+1)=f_{n}(x) \forall x \in R
$$

if

$$
n \neq 1, f_{n}(0)=p_{n}(0)=p_{n}(1)=f_{n}(1)
$$

therefore f_{n} is continuous.

Lemma 3

If $n \geq 0$ is even, then f_{n} is an even function.

Proof :

Let $\{a\}=a-\lfloor a\rfloor$ denote the fractional part of a real number a, and note that $\{-a\}=1-\{a\}$ if $a \in \mathbb{R}-\mathbb{Z}$. Then if $x \in \mathbb{R}-\mathbb{Z}$,

$$
\begin{gathered}
f_{n}(-x)=p_{n}(\{-x\}) \\
=p_{n}(\{1-x\}) \\
=p_{n}(\{x\})
\end{gathered}
$$

by Proposition 2

$$
=f_{n}(x)
$$

Fourier Series

Let the fourier series of f_{n} be

$$
\frac{a_{n, 0}}{2}+\sum_{m=1}^{\infty}\left(a_{n, m} \cos (2 \pi m x)+b_{n, m} \sin (2 \pi m x)\right)
$$

Lets calculate some terms

$$
a_{n, 0}=2 \int_{0}^{1} f_{n}(x) d x=2 \int_{0}^{1} p_{n}(x) d x=0 \forall n \geq 1
$$

Assume now that $n \geq 4$ is even. If $m \geq 1$

$$
\begin{gathered}
a_{n, m}=2 \int_{0}^{1} f_{m}(x) \cos (2 \pi m x) d x= \\
2 \int_{0}^{1} p_{n}(x) \cos (2 \pi m x) d x= \\
\left.\frac{2}{2 \pi m}\left[p_{n}(x) \sin (2 \pi m x)\right]\right|_{0} ^{1}-\frac{2}{2 \pi m} \int_{0}^{1} p_{n-1}(x) \sin (2 \pi m x) d x= \\
\frac{-2}{2 \pi m}-\left[\left.\frac{1}{2 \pi m}\left[p_{n-1}(x) \operatorname{cox}(2 \pi m x)\right]\right|_{0} ^{1}+\int_{0}^{1} \frac{1}{2 \pi m} p_{n-2}(x) \cos (2 \pi m x) d x=\right. \\
2\left(\frac{-1}{2 \pi m}{ }^{2}\right) \int_{0}^{1} p_{n-2}(x) \cos (2 \pi m x) d x= \\
2\left(\frac{1}{2 \pi i m}^{2}\right) \int_{0}^{1} p_{n-2}(x) \cos (2 \pi m x) d x
\end{gathered}
$$

Note that we introduce i here because it is algebraically expedient to do so, not because it is necessary.

By induction together with the fact that for all even $n \geq 2$

$$
\begin{gathered}
\int_{0}^{1} p_{n}(x) \cos (2 \pi m x) d x \\
\left.=\left.\frac{1}{(2 \pi i m)^{n-2}}\left(\frac{1}{2 \pi m}\right)\left[p_{2}(x) \sin (2 \pi m x)\right]\right|_{0} ^{1}-\frac{1}{2 \pi m} \int_{0}^{1} p_{1}(x) \sin (2 \pi m x) d x\right) \\
\left.=\left.\frac{1}{(2 \pi i m)^{n-2}}\left(\frac{-1}{2 \pi m}\right)\left(\frac{-1}{2 \pi m}\right)\left[p_{1}(x) \cos (2 \pi m x)\right]\right|_{0} ^{1}+\frac{1}{2 \pi m} \int_{0}^{1} \cos (2 \pi m x) d x\right) \\
=\frac{1}{(2 \pi i m)^{n-2}}\left(\frac{-1}{2 \pi m}\right)\left(\frac{-1}{2 \pi m}+0\right) \\
=\frac{1}{(2 \pi i m)^{n}}
\end{gathered}
$$

Thus

$$
\begin{gathered}
\int_{0}^{1} p_{2}(x) \cos (2 \pi m x) d x=-\left(\frac{1}{2 \pi i m}^{2}\right) \\
a_{n, m}=\frac{-2}{(2 \pi i m)^{n}}
\end{gathered}
$$

Now $a_{n, m}=0$ when n is even and when $n \geq 4$ and $m \geq 1$, and the equality holds when $\mathrm{n}=2$ as well. The remaining case where $\mathrm{n}=2$ and $\mathrm{m}=0$ is immediate from the fact that $p_{n}(0)=p_{n}(1)$ when $n \geq 2$; specifically, $a_{n, 0}=0$. Hence, when $n \geq 2$ is even. By fourier convergence

$$
\begin{gathered}
f_{n}(x)=\sum_{m=1}^{\infty} a_{n, m} \cos (2 \pi m x)= \\
\sum_{m=1}^{\infty} \frac{-2}{(2 \pi i)^{n}} \frac{\cos (2 \pi m x)}{m^{n}}
\end{gathered}
$$

Hence now, as we have already remarked, f_{n} is continuous when $n \neq 1$, so we may evaluate the Fourier series at $\mathrm{x}=0$ to find that

$$
f_{n}(0)=\sum_{m=1}^{\infty} \frac{-2}{\left(2 \pi_{i} m\right)^{n}}
$$

as $\cos (0)=1$

$$
\frac{-2}{(2 \pi i)^{n}} \sum_{m=1}^{\infty} \frac{1}{m^{n}}=\frac{-2}{(2 \pi i)^{n}} \zeta(n)
$$

Rearranging gives us

$$
\begin{gathered}
\zeta(n)=\frac{-1}{2}(2 \pi i)^{n} f_{n}(0)= \\
\frac{-1}{2}(2 \pi i)^{n} p_{n}(0)= \\
\frac{-1}{2}(2 \pi i)^{2 k} \frac{B_{2 k}}{2 k!}= \\
\frac{(-1)^{k+1}(2 \pi)^{2 k} B_{2 k}}{2(2 k!)}
\end{gathered}
$$

where $k=\frac{n}{2}$.
Hence Done
QED

