Chapter 7
Zeta(2k)

How do we dervive the ((2k) where k € N using fourier analysis?

Introduction
Recap: We start with some periodic function.

Periodic :f(z + p) = f(x)Vx where p is fixed called a period of f(x).
A continous periodic function can be expressed as an infinite series

2 2
7mm> + bysin TNT
p p

f(z) = % + Z a,cos( )

n=1

where
2mnx

p

2
a, = ];/If(x)cos( Ydz(n > 0)

and
2mnx

p

2 :
a, = E/If(x)sm( Ydxz(n > 0)

where [ is any interval of length p.

Bernoulli polynomials

Usual definition: Lets look at the case of the usual way how the bernoulli’s
polynomail is defined
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Question : We might wonder why is this a good description of the
bernoulis number.

Another ideas is to work towards another description of the B, (x)

e [et

then

Proposition 1:
e po(z)=1
o Pt (1) = pal@))¥n = 0

e pa(0) = pu(1)¥n > 2

Proof:

e 1) This is clear from the defining relation

e 2) We differentiate the defining relation with respect to x:

AT,

=> pl(x)
n=1

because p'(z) = 0. Dividing both sides by t and using the defining
relation again, we obtain

Y pa(@)t" =Y P (a)tn!
n=0 n=1

= Z P (2)t"
n=0

SO Ppi1(z) = pp(x))¥n >0
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But we can do better that is to change it i.e:

e po(z)=1
® ppy1(x) = pu(z))¥n = 0
o fol pn(x)dz = 0¥n > 1
Note also that it is obvious that properties (1)’, (2)’, and (3)’ define a

family of polynomials p, (x)nzo. One could therefore use these proper-
ties to define the p, ().

Proposition 2:

That is Vn > 0

Proof o)
0 (te 1—x t)
1—2)t" =
2 el = =)
- (tete—mt)
GRS
B ( uefueuz)
(e —1)
where u = -t
(ue"™)
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Reminder : B, (z) = n!p,(z) scaled to be monic

Let f, : R — R be the periodic function of period 1 agreeing with the
polynomial p,(x) on [0, 1). Note that, if n > 2, then

Pa(1) = pal(0) = / Pos(z)dz = 0

so f, is continuous on R.

We will compute the fourier series of p, (z) where n is even .More precisely
we extend p, () to a periodic function f,, such that

fn(‘r) = pn(ﬂf)

ifo<z<1,
falr+1) = fu(x)Vzx € R

if
n# 1, f,.(0) = p,(0) = p,(1) = fu(1)

therefore f,, is continuous.
Lemma 3
If n > 0 is even, then f, is an even function.

Proof :

Let {a} = a— |a| denote the fractional part of a real number a, and note
that {—a} =1- {a} if a € R—Z. Thenif z € R - Z,

fn(=2) = pn({—2})

= pn({l - .1'})
= pn({x}>



by Proposition 2

Fourier Series

Let the fourier series of f, be
oo
-0y Z U, mC0S(2mma) + by msin(2mma))
m=1
Lets calculate some terms

1 1
ano =2 [ folz)dr = 2/ pn(x)dr = 0¥n > 1
0 0

Assume now that n >4 iseven . If m > 1

Apm = 2/1 fm(x)cos(2mma)dx =
0

1
2/ pn(x)cos(2mma)dr =
0
2 oot
5 ——[pn(x)sin(2rma)] ) s — Pn_1(z)sin(2rmz)dr =
—2 1

[

2mm 2rm [pn 1( )Cox(Qme)]

2(_—1 )/ Pn_o(x)cos(2mrma)dx =

2mrm ),

1
2mm

2( ) /0 Pn—o()cos(2mma)dx

1 1
1
——Dn— 2 dr =
+/0 5P o(z)cos(2mrma)dx
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Note that we introduce ¢ here because it is algebraically expedient to do

so, not because it is necessary.
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By induction together with the fact that for all even n > 2

/0 pn(x)cos(2mma)dx
— (27rz'7i1)”_2 (2;m)[p2(x)sin(27rmx)] ) — ﬁ i pl(x)sm(27rmx)dx>

1 -1 —1 1 1 1
(2mim)n—2 <27rm> (27Tm)[p1(x)cos( mx)] 0+ 2mm cos(2mmz) x>
1 -1 -1
-~ (2mim)n—2 (27rm) (27rm +O>
_ 1
~ (2mim)n
Thus
1 L 2
/0 po(x)cos(2mma)dx = _<27rz'm )

—2
(2mim)n

Qn,m

Now @y, ,, = 0 when n is even and when n > 4 and m > 1, and the equality
holds when n = 2 as well. The remaining case where n = 2 and m = 0 is
immediate from the fact that p,(0) = p,(1) when n > 2; specifically, a,, o = 0.
Hence, when n > 2 is even. By fourier convergence

[e.o]

falz) = Z Ap mcos(2mme) =

m=1

o

—2 cos(2mmx
3 ( )

(2mi)»  mn

m=1
Hence now, as we have already remarked, f, is continuous when n # 1, so
we may evaluate the Fourier series at x = 0 to find that



as cos(0) =1

Rearranging gives us

where k = %

Hence Done

QED

5 2mi)"pu(0) =

—1 . QkBQk o
7(27’(’2) 2_k| =
(_1)k+1(2ﬂ.)2k32k

2(2k1)
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