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Abstract

This project proves the following Theorem regarding the Solution Space of a Homo-
geneous Linear Differential Equation in the Complex Plane. All the required prerequi-
sites/lemmas and additional Theorems are proved in order to prove the required theo-
rem.

Theorem 1 For any arbitrary open and connected region R ⊂ C, The solution space
of the homogeneous linear differential equation of order n

y(n)(z)+an−1(z)y(n−1)(z)+ · · ·+a0(z)y(z) = 0

where every coefficient a j(z), j = 0,1,2, . . . ,n − 1, is continuous is n -dimensional
(dim(V n

R ) = n) if and only if every coefficient a j(z), j = 0,1,2, . . . ,n−1 is analytic.
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Chapter 1

Preliminaries

1.1 Analysis Background

As with polynomials, analytic functions can have repeated roots, and these are observed
using derivatives. In the first section we will go ahead and prove few lemmas/theorem’s
and state definitions that can help us prove the required theorem. Unless stated all
domains D are in C. Kuttler (2020)

1.1.1 Formal Power Series

A (formal) power series centered at x0 ∈ C is a sequence an (n ∈ N0) , written as
∑n=0 an(x− x0). It converges at x1 ∈ C if ∑

∞
n=0 an (x1 − x0)

n converges and diverges
otherwise.

1.1.2 Power series as functions

Let f (x) = ∑
∞
n=0 anxn be a (formal) power series (centred at 0). If I ⊆ C is a set such

that for all x0 ∈ I, f (x0) converges, we can define a function F : I → C defined by
F(z) = f (z), where the right hand side means the limit of the series ∑

∞
n=0 anzn.

1.1.3 Analytic Function
Let D be an open interval, and f a function defined on I. We say that f is analytic
at x0 ∈ D, if there is a formal power series g centred at c convergent on an interval
(x0−δ ,x0+δ )⊆ D for some δ > 0, such that f (x) = g(x) on (c−δ ,c+δ ). We say f
is analytic if that holds for every c ∈ I.

Example

The exponential function is analytic at 0. In fact, every power series with positive radius
of convergence is analytic at its centre.
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1.1.4 Coefficients of a formal power series
Let f = ∑

∞
n=0 an(x−x0)

n be a formal power series centered at x0 with radius of conver-
gence R > 0. Then f is smooth on (x0 −R,x0 +R), and f (n) is again a power series.
Then in particular, an =

1
n! f n(x0).

1.1.5 Zeros of an Analytic Function
If z0 is a regular point and not a singular point of an analytic function f and if f (z0) = 0,
then z0 is called a zero of f .

The point z0 is called a zero of f of order m if in some neighbourhood of z0, f can
be expanded in a Taylor series of the form

f (z) =
∞

∑an (z− z0)
n , where am 6= 0

1.1.6 Zeros of Order n
Let f : D →C and If f is analytic at z0, in a domain D, then we say that f has a zero of
order n ≥ 1 at z0 if

0 = f (z0) = f ′ (z0) = · · ·= f (n−1) (z0)

and f (n) (z0) 6= 0. If f (n) (z0) = 0 for all n ≥ 0, then we call z0 a zero of infinite order.

Example :

Let f (z) = z3 −1, then f (z) has a zero of order 1 at z0 = 1.

f (1) = 0

f ′(z) = 3z2

f ′(1) = 3

Therefore f (z) has a zero of order 1 at z0 = 1

1.1.7 Neighbourhood of a Zero of order m
A point z = z0 is a zero of f of order m if and only if in some neighbourhood of z0, f
can be expressed in the form f (z) = (z− z0)

m g(z), where g(z) is analytic at z0 and
g(z0) 6= 0 and f ,g ∈ D → C

Proof.

=⇒ Assume that z0 is a zero of f of order m. Then there exists a neighbourhood of z0
where we can expand f as

f (z) =
∞

∑
n=m

an (z− z0)
n , where am 6= 0



1.1 Analysis Background 3

Then

f (z) = (z− z0)
m

∞

∑
n=m

an (z− z0)
n−m

= (z− z0)
m

∞

∑
p=0

bp (z− z0)
p , where n−m = p and bp = ap+m

= (z− z0)
m g(z)

where g(z) = ∑
∞
p=0 bp (z− z0)

p is analytic at z0 and g(z0) = b0 = am 6= 0.
⇐=
Now assume that in some neighbourhood of z0, f can be expressed as

f (z) = (z− z0)
m g(z)

where g(z) is analytic at z0 and g(z0) 6= 0. Then we can expand g(z) in Taylor series
about z0 to obtain

g(z) =
∞

∑
n=0

an (z− z0)
n , where a0 = g(z0) 6= 0

Therefore, in some neighbourhood of z0, we have

f (z) = (z− z0)
m

∞

∑
n=0

an (z− z0)
n =

∞

∑
n=0

an (z− z0)
n+m

=
∞

∑
p=m

bp (z− z0)
p , where m+n = p and bp = ap−m

Since bm = a0 6= 0,z0 is a zero of f of order m. This proves the theorem.

1.1.8 Constant function
If f has a zero of infinite order at z0. Then there is a r > 0 such that f is identically
zero in Br (z0) where Br (z0) := {z ∈ C : |z− z0|< r}

Proof

Now there exists a r > 0 such that

f (z) =
∞

∑
n=0

an (z− z0)
n for all z ∈ Br (z0)

by definition.
Now since z0 is a zero of infinite order(using also the earlier lemma from subsection

1.1.3) then

an =
f (n) (z0)

n!
= 0 for all n ≥ 0.

Hence f (z) = 0 for all z ∈ Br (z0).
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1.1.9 Extended Theorem
If f is analytic in a domain D ⊂ C and if f has a zero of infinite order in D, then f is
identically zero. Earlier we proved that in every Br (z0) , ∃r ∈ C that f is identically
zero but this can be extended to the whole domain.

1.1.10 Zeros are Isolated
Let R ⊂C be some open set and let f be an analytic function defined on R. Then either
f is a constant function, or the set {z ∈ R : f (z) = 0} is totally disconnected ie all the
zeros are isolated.

Proof

Suppose f has no zeroes in R. Then the set described in the theorem is the empty set,
and we’re done. So we suppose ∃z0 ∈ R such that f (z0) = 0. Since f is analytic, there
is a Taylor series for f at z0 which converges for |z− z0|< R. Now, since f (z0) = 0, we
know a0 = 0. Other a j may be 0 as well. So let k be the least number such that a j = 0
for 0 ≤ j < k, and ak 6= 0 Then we can write the Taylor series for f about z0 as:

∞

∑
n=k

an (z− z0)
n = (z− z0)

k
∞

∑
n=0

an+k (z− z0)
n

where ak 6= 0 (otherwise, we’d just start at k+1 ). Now we define a new function g(z),
as the sum on the right hand side, which is clearly analytic in |z− z0| < R. Since it
is analytic here, it is also continuous here. Since g(z0) = ak 6= 0,∃ε > 0 so that ∀z
such that |z− z0|< ε, |g(z)−ak|< |ak|

2 . But then g(z) cannot possibly be 0 in that disk.
Hence the result.

1.1.11 Open Disk
The open disk of radius r around z0 is the set of points z with |z− z0|< r, i.e. all points
within distance r of z0

1.1.12 Closed Disk
The open disk of radius r around z0 is the set of points z with |z− z0| ≤ r, i.e. all points
within distance r of z0

1.1.13 Open Deleted Disk
The open deleted disk of radius r around z0 is the set of points z with 0 < |z− z0| < r.
That is, we remove the center z0 from the open disk. A deleted disk is also called a
punctured disk.
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1.1.14 Deleted Neighbourhood
A deleted neighbourhood of a point p is a neighbourhood of p, without {p}.

Example

The interval (−1,1) = {y : −1 < y < 1} is a neighbourhood of p = 0 in the real line,
so the set (−1,0)∪ (0,1) = (−1,1)\{0} is a deleted neighbourhood of 0.

1.1.15 Isolated
The singleton set x is an open set in the topological space S ⊆ X . If the space X is a
Euclidean space, then x is an isolated point of S if there exists an open ball around x
which contains no other points of S.

Example

For the set S = {0}∪ [1,2], the point 0 is an isolated point.

1.1.16 Pointwise Convergence
Let 6= D ⊂ CN , and let f , f1, f2, . . . be C -valued functions on D. Then the sequence
( fn)

∞

n=1 is said to converge pointwise to f on D if

lim
n→∞

fn(x) = f (x)

holds for each x ∈ D . Runde (2021) Similarly can also be defined in RN and also the
following subsequent theorems.

Examples

For n ∈ N, let
fn : [0,1]→ R, x 7→ xn

so that

lim
n→∞

fn(x) =
{

0, x ∈ [0,1)
1, x = 1

Let

f : [0,1]→ R, x 7→
{

0, x ∈ [0,1)
1, x = 1

It follows that fn → f pointwise on [0,1] .

1.1.17 Uniform Convergence
Let 6= D ⊂ CN , and let f , f1, f2, . . . be C -valued functions on D. Then the sequence
( fn)

∞

n=1 is said to converge uniformly to f on D if, for each ε > 0, there is nε ∈ N such
that | fn(x)− f (x)|< ε for all n ≥ nε and for all x ∈ D.
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Remark

Let us introduce the uniform norm

‖g‖D = sup
z∈D

|g(z)| for g : D → C.

Then fn → f uniformly in D if and only if ‖ fn − f‖D → 0 as n → ∞. We wil omit the
use of this norm and stick to the usual norm as above.

Examples

For n ∈ N, let

fn : R→ R, x 7→ sin(nπx)
n

Since ∣∣∣∣sin(nπx)
n

∣∣∣∣≤ 1
n

for all x ∈ R and n ∈ N, it follows that fn → 0 uniformly on R.

1.1.18 Uniform Limit of Continuous Functions
Let 6= D ⊂ CN, and let f , f1, f2, . . . be functions on D such that fn → f uniformly on D
and such that f1, f2, . . . are continuous. Then f is continuous.

Proof

Let ε > 0, and let x0 ∈ D. Choose nε ∈ N such that

| fn(x)− f (x)|< ε

3
for all n ≥ nε and for all x ∈ D. Since fne is continuous, there is δ > 0 such that
| fnε

(x)− fnε
(x0)|< ε

3 for all x ∈ D with ‖x− x0‖< δ . Fox any such x we obtain:

| f (x)− f (x0)| ≤ | f (x)− fnε
(x)|︸ ︷︷ ︸

< ε
3

+ | fnε
(x)− fnε

(x0)|︸ ︷︷ ︸
< e

3

+ | fnε
(x0)− f (x0)|︸ ︷︷ ︸

< ε
3

< ε.

Hence, f is continuous at x0. Since x0 ∈ D was arbitrary, f is continuos on all of D.

1.1.19 Uniform Cauchy Sequence
Let 6= D ⊂ CN . A sequence ( fn)

∞

n=1 of C -valued functions on D is called a uniform
Cauchy sequence on D if, for each ε > 0, there is nε ∈ N such that | fn(x)− fm(x)|< ε

for all x ∈ D and all n,m ≥ nε

1.1.20 Weierstrass M-test
Let 6= D ⊂ CN, let ( fn)

∞

n=1 be a sequence of C-valued functions on D and suppose
that, for each n ∈ N, there is Mn ≥ 0 such that | fn(x)| ≤ Mn for x ∈ D and such that
∑

∞
n=1 Mn < ∞. Then ∑

∞
n=1 fn converges uniformly and absolutely on D.
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Proof of Weierstrass M-test

Let ε > 0 and choose nε̃ ∈ N such that

n

∑
k=m+1

Mk < ε

for all n ≥ m ≥ nε . For all such n and m and for all x ∈ D, we obtain that∣∣∣∣∣ n

∑
k=1

fk(x)−
m

∑
k=1

fk(x)

∣∣∣∣∣≤ n

∑
k=m+1

| fk(x)| ≤
n

∑
k=m+1

Mk < ε

Hence, the sequence (∑n
k=1 fk)

∞

n=1 is uniformly Cauchy on D and thus uniformly con-
vergent. It is easy to see that the convergence is even absolute.

1.1.21 Differential Operator
Let R ⊂ C be an interval(open and connected set) and n,k be positive integers.

Consider the map
D : C1(R)→C(R)

given by D( f ) = f ′. More generally, for any k ∈ {1, . . . ,n}, consider the map

Dk : Ck(R)→C(R)

given by Dk( f ) = f (k), where f (k) denotes the k -th derivative of f . Observe that
Dk =D◦D◦· · ·◦D(k times ). By convention, D0 = Id (the identity map). The operators
(or maps) Dk are called differentiation operators.

Definition

A differential operator from Cn(R) to C(R) is a map

L : Cn(R)→C(R)

which can be expressed as a function of the differentiation operator D.

Examples

Let L = Dn or L = eD

Properties

• L : Cn(R) → C(R) is said to be linear if for any y(x),y1(x),y2(x) ∈ Cn(R) and
c ∈ R

L(y1 + y2) = L(y1)+L(y2) and L(cy) = cL(y)
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Linear ODE

An ODE given by F
(

x,y,y′, . . . ,y(n)
)
= 0 on an interval R is said to be linear if it can

be written as L(y)(x) = g(x), where L : Cn(R)→C(R) is a linear differential operator.

1.1.22 Homogeneous Linear n’th order ODE
Suppose that a j(z) ∈C(R) and an(z) = 1 for all z ∈ R. Let z0 ∈ R. Then the initial value
problem (IVP)

(Ly)(z) = 0, y( j) (z0) = y j, j = 0, . . . ,n−1

where y j ∈ R and L(y)(z) := y(n)(z) + an−1(z)y(n−1)(z) + · · ·+ a1(z)y′(z) + a0(z)y(z)
has a unique solution y(z) for all z ∈ R.

Superposition Principle

Let yi ∈Cn(R), i = 1, · · · ,n be any solutions of L(y)(z) = 0 on I. Then y(z) = c1y1(z)+
c2y2(z)+ · · ·+ cnyn(z), where ci, i = 1, · · · ,n are arbitrary constants, is also a solution
on R

Kernel

Consider the linear differential operator L where

L(y) := any(n)+an−1y(n−1)+ · · ·+a1y′+a0y

where ai : R → C are given functions. Given g(z) ∈ C(R), find y ∈ Cn(R) such that
L(y) = g(z). Since L : Cn(R)→C(R) is a linear transformation, the solution set of

L(y) = g(z)+ yp

is given by
Ker(L)

where yp is a particular solution (PS) satisfying L(yP)= g and Ker(L)= {y ∈Cn(R) | L(y) = 0}

1.1.23 Gronwalls lemma
Let u(z) and h(z)≥ 0 be continuous in [a,b]⊂ R such that

u(z)≤C+
∫ z

a
u(s)h(s)ds−1

for some constant C and for all a ≤ z ≤ b. Then

u(z)≤Ce
∫ z

a h(s)ds

for all a ≤ z ≤ b. To see this, differentiate both sides of 1 and use the second funda-
mental theorem of calculus to obtain

u′(z)−u(z)h(z)≤ 0
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Multiplying both sides by the integrating factor e−
∫ z

a h(s)ds to obtain
d
dz

[
e−

∫ z
a h(s)dsu(z)

]
≤ 0

Integrating both sides from a to z, we find

e−
∫ z

a h(s)dsu(z)−u(a)≤ 0

Hence proved.

1.1.24 Closed Bounded Set
Let D ⊂ C be a closed, bounded set and let f (z) be a continuous complex function in
D then f (z) is bounded in D.

Assume f (z) is not bounded on D. Then ∀n ∈ N,∃zn ∈ D s.t. | f (zn)| > n. Con-
struct the sequence (zn)

∞

n=1 ⊂ E from these zn. Note that (zn)
∞

n=1 is bounded, as D is
bounded. Then by Bolzano-Weierstrass, (zn)

∞

n=1 has a limit point L, and so there ex-
ists a subsequence

(
znk

)∞

k=1 which converges to L. Moreover, L ∈ D since D is a closed
set. This implies limk→∞ f

(
znk

)
= f (L), and so limk→∞

∣∣ f (znk

)∣∣= | f (L)| because f is
continuous on D, and f (z) continuous implies | f (z)| is continuous.

1.2 Linear Algebra Background

All of the definitions/theorems and proofs are from the standard 227/127 textbook and
have been followed similarly. Kuttler (2019)

1.2.1 Vector Spaces
Let F be a field. An F -véctor space or simply vector space if F is understood is
a triple (V,+, ·) where V is a nonempty set and + is an associative operation on V ,
called the addition of V , and . is a map F×V → V called the scalar multiplication
(which associates to each c ∈ F and each v ∈V an element cv = c ·v ∈V ), such that the
following properties hold:

• The addition is commutative: v+w = w+ v for all v,w ∈V .

• There is an identity element for the addition: There is an element 0 called the
zero vector or simply zero of V such that 0+ v = v+0 = v for all v ∈V .

• Each element of V has an additive inverse: for each v ∈V there is an element −v
of V such that v+(−v) = 0

• The scalar multiplication is associative: for each a,b ∈ F and each v ∈V , we have
a(bv) = (ab)v

• 1 ∈ F is an identity element for the scalar multiplication: 1v = v for all v ∈V .

• The scalar multiplication is distributive in the following two senses: for each
a,b ∈ F and each v ∈ V we have (a+ b) · v = av+ bv; and for each c ∈ F and
v,w ∈V also c · (v+w) = cv+ cw.
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Examples

• A vector space over the field R of real numbers is often called Real, and a vector
space over the field C of complex numbers is often called Complex.

1.2.2 Subspaces
Let V be an F -vector space. A subset W ⊆V is called a subspace of V if it satisfies the
following three properties:

• W is not empty.

• If v,w ∈W then also v+w ∈W .

• If w ∈W and r ∈ F then rv ∈W .

Examples

A function f : R→R is called a polynomial function if there exists a (fixed) list of real
numbers a0,a1, . . . ,an such that for each x ∈ R

f (x) = a0 +a1x+ · · ·+anxn

Let P(R) be the set of all polynomial functions on R. Then P(R)⊆F(R) is a subspace.

1.2.3 Linear Independence/Dependence
An ordered list (v1,v2, . . . ,vp) of vectors v1,v2, . . . ,vp ∈V is called linearly dependent
if there are scalars c1,c2, . . . ,cp ∈ F not all zero such that

c1v1 + c2v2 + · · ·+ cpvp = 0

Such a formula is called a Linear Dependence relation. We also call the vectors
v1,v2, . . . ,vp linearly dependent if the list (v1,v2, . . . ,vp) is.

The list (v1,v2, . . . ,vp) is called linearly independent if it is not linearly dependent.
In other words, it is linearly independent if

c1 = c2 = · · ·= cp = 0.

Thus, (v1,v2, . . . ,vp) is linearly independent if and only if there is one and only one
way to write 0 as a linear combination of the vi : 0 = 0v1+0v2+ · · ·+0vp. If this is the
case we also say the vectors v1,v2, . . . ,vp are linearly independent.

Examples

• In Fn, the vectors e1,e2, . . . ,en are linearly independent. Indeed, suppose c1e1 +
c2e2 + · · ·+ cnen = 0. Then observe that

c1e1 + · · ·+ cnen =


c1
c2
...

cn

= 0

if and only if all ci = 0.
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• In R3, the three vectors  1
0
4

 ,
 1

1
5

 ,
 2

2
2


are linearly independent.

1.2.4 Span
Let v1,v2, . . . ,vn ∈V (n > 0). Then Span(v1, . . . ,vn) is a subspace of V . In fact it is the
minimal subspace containing v1,v2, . . . ,vn in the following senise: if W is any subspace
of V containing v1,v2, . . . ,vn as elements, then Span(v1,v2, . . . ,vn)⊆W . Thus,

Span(v1,v2, . . . ,vn) =
⋂

W⊆V
v1,v2,...,vn∈W

W

where the intersection ranges over all subspace of V that contain v1,v2, . . . ,vn.

Examples

If A1,A2, . . . ,An ∈ Fm are the columns of the matrix A ∈ Mm×n(F), then we call

Col(A) = Span(A1,A2, . . . ,An)

the column space of A. It is a subspace of Mm×1(F) which as usual we identify with Fm

It is the set of all B ∈ Fm for which the matrix equation AX = B has a solution: indeed,
AX = B has a solution if and only if B can be expressed as a linear combination of the
columns A1,A2, . . . ,An of A.

1.2.5 Basis
Let V be a vector space. A basis is a linearly independent ordered list of generators.
Thus, B ⊆ V is a basis if and only if B is linearly independent and Span(B) = V . We
write

B= (v1,v2, . . . ,vn)

if v1,v2, . . . ,vn are the elements of B (in order). By convention, the empty set is a basis
for V = {0}.

1.2.6 Examples
Suppose V = Fn .Then E = (e1,e2, . . . ,en) is a basis. (Both E is linearly independent
and that Span(E) = Fn. ) For v ∈ Fn we have Ev = v, so [v]E = v. This makes this
particular basis a little special; it is therefore often referred to as the standard basis of
Fn.
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1.2.7 Exchange Lemam
Let V be a vector space spanned by elements v1,v2, . . . ,vn, say. Lel v = c1v1 + · · ·+
cnvn ∈V be a vector. If ci 6= 0, then

V = Span(v1,v2, . . . ,vi−1,v,vi+1, . . . ,vn)

1.2.8 Theorem for Independence
Let V be a vector space generated by finitely many elements (v1,v2, . . . ,vn) , say. If
(w1,w2, . . . ,wk) is a linearly independent list of elements of V , then k ≤ n.

Proof

Let L = (v1,v2, . . . ,vn) and M = (w1,w2, . . . ,wk). If n = 0 (that is, if L is empty),
then V = {0}, so any number of elements of V are linearly dependent. Hence k = 0
as well. We may therefore assume that n > 0. Suppose precisely m ≥ 0 of the ele-
ments of M are also elements of L. By reordering if necessary, we may assume that
w1 = v1,w2 = v2, . . . ,wm = vm. We will now show how to increase m by 1 if k−m > 0.
In this case, wm+1 /∈ L. We may write wm+1 = c1v1 + · · ·+ cmvm for suitable ci ∈ F.

Claim: At least one ci with i > m must be nonzero. Indeed, otherwise cm+1 =
cm+2 = · · ·= cn = 0 and

wm+1 = c1v1 + · · ·+ cmvm = c1w1 + · · ·+ cmwm

contradicting the fact that M is linearly independent. This proves the claim. So pick
one such i (ie. i > m and ci 6= 0 ). By the Exchange Lemma, we can replace vi by wi
in L, obtaining a new list of generators L′ which has m+ 1 elements in common with
M and still satisfies V = Span(L′) This process can be repeated as long as k−m > 0.
Thus eventually, all elements of M must be elements of the newly created list L′. In
particular, n ≥ k.

1.2.9 Dimension
Let V be a vector space with basis B= (v1,v2, . . . ,vn). The uniquely determined integer
n is called the dimension of V and denoted dimV .

The empty set by convention is a basis for V = {0} (it is after all a linearly indepen-
dent set that spans V ). So dim{0}= 0. If V does not have a (finite) basis, then we say
dimV = ∞.

Example

As expected dimR = 1 (the list with one element (1R) is a basis), dimR2 = 2 and
dimR3 = 3. More generally, (3.23)

dimFn = n

• The standard basis, E= (e1,e2, . . . ,en) of Fn has exactly n elements.
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• dimMm×n(F) = mn. Here we may choose as a basis a list whose elements are
precisely the mn matrix units ei j (in any ordering).
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Chapter 2

Supplementary Lemmas’

2.1 Lemma 1

If f (x) is a solution of

y(n)(z) = an−1(z)y(n−1)(z)+ · · ·+a0(z)y(z)

then f := 0, ∀z ∈ R ⊂ C.

2.1.1 Proof
Before going over the proof I would first like to present an example before proving the
general case.

Let us saying we have the following equation when n = 1

y1 = a0(z)y, a0 = g(z)

Now this is easily solvable and the general solution is given by

y =Ce
∫

a0(z)dz,∀C ∈ R

Now note that the exponential function has no zeros ⇐⇒ no poles hence there does
not

∃z0, such that ez0 = 0

Therefore

6 ∃z0 s.t e{
∫

a0(z)dz=h(z0)}= 0 unless
∫

a0(z)dz= lng(z) =⇒ elng(z)= g(z)∃z0 s.t g(z0)= 0

Now considering the general solution let us divide this problem into two sub parts

• Now consider a function a0(z) =
g′(z)
g(z) then e

∫
a0(z)dz = lng(z). Then the general

solution is y = Cg(z) and y′ = Cg′(z) and let us assume that C 6= 0. Then by
assumption ∃z0,z1 s.t g(z0) = 0 = g′(z1), but clearly if this is the case then the
function a0(z) is not analytic in the region R. If we exclude the point’s at which
the function a0(z) is 0 then we get the region R at which the function has no zeros
and hence our general solution can never be 0 and hence has no zero of order 2.
Therefore the only way for y =Cg(z) = 0 is for C = 0 and hence y = 0 which is
a zero of order infinite order.
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• Considering any other general function yields the same answer as before as
6 ∃z0 s.t e{

∫
a0(z)dx=h(z0)}= 0 and hence the only way for y=Ce

∫
a0(z)dz = 0 is y= 0.

Hence the only solution for this example to have a zero of order 2 (or a zero of
infinite order which proved by 1.18 and 1.19 could be extended to the whole of R )
would be f := 0.

Now let us prove the general case. From the hypothesis of our lemma and after
substituting f (z)(which is a solution) in our original equation ie

y(n)(z) = an−1(z)y(n−1)(z)+ · · ·+a0(z)y(z)

it is clear that f has a zero of order atleast n+1. f (z0) = 0, z0 ∈ R. Now we prove this
by contradiction. Suppose that f is not identically 0 ie f 6:= 0 then ∃p ≥ 1 such that f
has a zero of order n+ p at z0. Then by 1.1.7 we have

f (z) = (z− z0)
n+p ·g(z)

and we already know that g(z0) 6= 0 and g(z) is analytic in the Neighbourhood of z0. To
make simplifications easier let k = n+ p and then let

f (z) = (z− z0)
k ·g(z)

Now taking derivatives of f we find that

f ′ = k · (z− z0)
k−1 ·g(z)+g′(z) · (z− z0)

k

f ′′= g′′(z)·(z−z0)
k+k ·(z−z0)

k−1 ·g′(z)+k(k−1)·(z−z0)
k−2 ·g(z)+g′(z)·k ·(z−z0)

k−1

Similarly we can find all derivatives upto f n ie the n’th derivative and substitute
these all in the equation

y(n)(z) = an−1(z)y(n−1)(z)+ · · ·+a0(z)y(z)

Example when n = 1
Then substituting in the original equation above we gain.

k · (z− z0)
k−1 ·g(z)+g′(z) · (z− z0)

k = a0 · ((z− z0)
k ·g(z))

k · (z− z0)
k−1 ·g(z)−a0 · ((z− z0)

k ·g(z)) =−g′(z) · (z− z0)
k

k ·g(z)(z− z0)
k−1(1−a0(z− z0)) = (z− z0)

k ·g′(z)

k ·g(z)(z− z0)
k−1 = (z− z0)

k · −g′(z)
(1−a0(z− z0))

Now let p(z) = −g′(z)
(1−a0(z−z0))

and this implies
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k ·g(z)(z− z0)
k−1 = (z− z0)

k · p(z)

Similarly grouping only the g(z) coefficients together and other terms naming it as
function p(z) we have

k(k−1) · · ·(k−n+1)g(z)(z− z0)
k−n = (z− z0)

k−n+1 p(z)

k(k−1) · · ·(k−n+1)g(z) = (z− z0)p(z)

Now p(z) is clearly continuous as it is just gonna be a bunch of coefficients and
derivatives of g(z) and hence analytic too. Now the above equation only holds true in
some deleted neighbourhood of z0 as if it was true including z0 then we couldn’t really
define f (z) = (z− z0)

kg(z) as f (z0) = 0.
Now finally

lim
z→z0

k(k−1) · · ·(k−n+1) ·g(z0) = lim
z→z0

(z− z0)p(z)

lim
z→z0

k(k−1) · · ·(k−n+1) ·g(z0) = 0

And finally we know that

k(k−1)....(k−n+1) 6= 0

Hence the only possibility is g(z0) = 0
which is a contradiction to our statement and 1.1.7. Hence

f := 0

2.2 Solution Space

Now before proving the next lemma let us first understand what does a solution space
mean. Krom (1979)

2.2.1 Definition
The solution space of a linear homogeneous differential equation is a vector space over
any field F . This is denoted by V n

F and the dimension of it denoted by dim(V n
F ).

Let R ⊂ C Then V n
R is a linear space of analytic functions over the field of Complex

numbers (C).

2.2.2 Example
Let F be the vector space with the basis {t,et} . We expand the determinant∣∣∣∣∣∣

y t et

y′ 1 et

y′′ 0 et

∣∣∣∣∣∣



18 Supplementary Lemmas’

by the elements of the first column to get (t −1)y′′− ty′+ y = 0.
An important example is the constant coefficient differential equation

an
dny
dzn + · · ·a1

dy
dz

+a0y = 0, with an 6= 0

A basis for the solution space F is given by{
zkezλ i

}
k = 0,1, . . . ,mi −1; i = 1, . . . ,s

where λ1, . . . ,λs are the distinct roots of the characteristic equation

f (λ ) = anλ
n + · · ·+a1λ +a0 = 0

and λi has multiplicity m1.

2.3 Lemma 2

dim(V n
R )≤ n

2.3.1 Proof
Now this should be obvious due to the fact that we proved this in 1.2.8 ie the Theorem
for independence due to the fact that (y1,y2 · · · ,yn) generate the solution space and any
other list of such vectors of dimension k will always be less than or equal to n. The next
proof follows by the way the paper describes it and goes as follows.

Let us assume that dim(V n
R ) > n and obtain a contradiction. Let (y1,y2, · · · ,yn+1)

be a linearly independent list of our solution space (V n
R ).

Consider the system of n linear equations with n+1 unknowns and z ∈ R as follows

n+1

∑
k=1

xk · yi
k(z) = 0, i ∈ {0,1,2 · · · ,n−1}

This system looks like

x1 · y0
1(z)+ x2 · y0

2(z) · · ·+ xn+1 · y0
n+1(z) = 0

x1 · y1
1(z)+ x2 · y1

2(z) · · ·+ xn+1 · y1
n+1(z) = 0

· · ·
· · ·

x1 · yn−1
1 (z)+ x2 · yn−1

2 (z) · · ·+ xn+1 · yn−1
n+1(z) = 0

Now this system has a non trivial solution say (s1,s2, · · · ,sn+1) and this implies that
the solution

n+1

∑
k=1

si · yi
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satisfies
y(n)(z) = an−1(z)y(n−1)(z)+ · · ·+a0(z)y(z)

then this solution has a zero of order n at z and by Lemma 1 this implies that this
solution is identically 0 ie

n+1

∑
k=1

si · yi := 0 ∈ R

But clearly this is a contradiction since we assumed that we have a non trivial solu-
tion and that (y1,y2, · · · ,yn+1) are linearly independent in R.

Clearly this is directly correlated to the previous proof of the Independence Theo-
rem.
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Chapter 3

Proof of the Main Theorem

3.1 Proof of the Main Theorem

Finally we have reached the gist of the paper and ready to prove the Main theorem after
all the prerequisites have been met. Any additional Lemma/Theorems that are required
have been proved subsequently. Bose (1982)

3.1.1 Statement

For any arbitrary region R ⊂ C, The solution space of the homogeneous linear
differential equation of order n and where every coefficient a j(z), j = 0,1,2, . . . ,n−1,
is continuous

y(n)(z)+an−1(z)y(n−1)(z)+ · · ·+a0(z)y(z) = 0

is n -dimensional (dim(V n
R )= n) if and only if every coefficient a j(z), j = 0,1,2, . . . ,n−

1 are analytic.

3.1.2 Proof

⇐= We need to first prove that if all the coefficient’s a j(z), j = 0,1,2, . . . ,n− 1, are
analytic in R ⊂ C which are all also continuous then dim(V n

R ) = n.

Now this is basically to prove Theorem 1.2.2 ie Suppose that a j(z) ∈ C(R) and
an(z) = 1 for all z ∈ R. Let z0 ∈ R. Then the initial value problem (Eqn 1)

(Ly)(z) = 0, y( j) (z0) = y j, j = 0, . . . ,n−1 z0 ∈ R

where y j ∈ R and L(y)(z) := y(n)(z) + an−1(z)y(n−1)(z) + · · ·+ a1(z)y′(z) + a0(z)y(z)
has a unique solution y(z) in a closed bounded set E ⊂ R that contains z0.



22 Proof of the Main Theorem

3.1.3 Existence and Uniqueness Theorem
Existence

The existence of a local solution is obtained here by transforming the problem into a
first order system. This is done by introducing the variables(similar as to the case we
did in the notes)

x1 = y,x2 = y′, · · · ,xn = y(n−1)

In this case, we have

x′1 = x2

x′2 = x3
... =

...
x′n−1 = xn

x′n =−an−1(z)xn −·· ·−a1(z)x2 −a0(z)x1

Thus, we can write the initial-value problem as a system:
x1
x2
x3
...

xn


′

=


0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −1
a0 a1 a2 a3 · · · an−1




x1
x2
x3
...

xn

+


0
0
...
0
0


or in a more compact form

x′(z) = A(z)x(z)+b(z), x(z0) = x0

and where A(t) =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · 1

−a0 −a1 −a2 −a3 · · · −an−1



x(z) =


x1
x2
x3
...

xn

 , b(z) =


0
0
...
0
0

 ,x0 =


y0
y1
...

yn−1


Therefore since b(z) is a 0 vector hence we can omit this out of our equation and hence
our compact form equation(Eqn 2) becomes

x′(z) = A(z)x(z), x(z0) = x0

Note that if y(z) is a solution of Eqn 1 then the vector-valued function

x(z) =


y
y′
...

y(n−1)


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is a solution to Eqn 2. Conversely, if the vector

x(z) =


x1
x2
x3
...

xn


is a solution of Eqn 2 then x′1 = x2,x′′1 = x3, · · · ,x(n−1)

1 = xn.
Hence

x(n)1 = x′n =−an−1(z)xn −an−2(z)xn−1 −·· ·−a0(z)x1

and
x(n)1 +an−1(z)x

(n−1)
1 +an−2(z)x

(n−2)
1 + · · ·+a0(z)x1 = 0

or
y(n)+an−1(z)y(n−1)+an−2(z)y(n−2)+ · · ·+a0(z)y = 0

which means that y = x1(z) is a solution to Eqn 1.
Moreover, x1 (z0) = y0,x′1 (z0) = x2 (z0) = y1, · · · ,x(n−1)

1 (z0) = xn (z0) = yn−1. That
is, x1(z) satisfies the initial conditions of Eqn 1.

Next, we start by reformulating Eqn 2 as an equivalent integral equation. Integra-
tion of both sides of Eqn 2 yields (Eqn 3)∫ z

z0

x′(s)ds =
∫ z

z0

[A(s)x(s)]ds

Applying the Fundamental Theorem of Calculus to the left side of Eqn 3 yields

x(z) = x(z0)+
∫ z

z0

[A(s)x(s)]ds, x(z0) = x0 −Eqn 4

Thus, a solution of Eqn 4 is also a solution to Eqn 2 and vice versa. Now To prove the
existence of a solution, we shall use the method of successive approximation.

Letting

x0 =


y0
y1
...

yn−1


we can introduce Picard’s iterations defined recursively as follows:

x0(z) = x0
x1(z) = x0 +

∫ z
z0
[A(s)x0(s)]ds

x2(z) = x0 +
∫ z

z0
[A(s)x1(s)]ds

...
xN(z) = x0 +

∫ z
z0
[A(s)xN−1(s)]ds
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Let

xN(z) =


x1,N
x2,N

...
xn,N


For i = 1,2, · · · ,n, we are going to show that the sequence {xi,N(z)}∞

N=1 converges uni-
formly to a function xi(z) such that x(t) (with components x1,x2, · · · ,xn) is a solution
to Eqn 4 and hence a solution to Eqn 2.

Let E be a closed bounded set containing z0 and contained in R ⊂ C. For i =
0,1, · · · ,n−1, the function ai(z) is continuous in z ∈ R and in particular it is continuous
in E ⊆ R. We know from analysis then that a continuous function on a closed bounded
set is bounded( Theorem 1.1.24). Hence, there exist positive constants k0,k1, · · · ,kn−1
such that

max
z∈E

|a0(z)| ≤ k0, max
z∈E

|a1(z)| ≤ k1, · · · ,max
z∈E

|an−1(z)| ≤ kn−1

This implies that

‖A(z)x(z)‖= |x2|+ |x3|+ · · ·+ |xn−1|+ |a0x1 +a1x2 + · · ·+an−1xn|
≤ |x2|+ |x3|+ · · ·+ |xn−1|+ |a0| |x1|+ |a1| |x2|+ · · ·+ |an−1| |xn|
≤ k0 |x1|+(1+ k1) |x2|+ · · ·+(1+ kn−2) |xn−1|+ kn−1 |xn|
≤ K · ‖x‖

for all z ∈ E, where we define

||x||= |x1|+ |x2|+ · · ·+ |xn|

and where
K = k0 +(1+ k1)+ · · ·+(1+ kn−2)+ kn−1

For i = 1,2, · · · ,n, we have

|xi,N − xi,N−1| ≤ ‖xN −xN−1‖ ≤
∫ z

z0

‖A(s) · (xN−1 −xN−2)‖ds

≤ K
∫ z

z0

‖xN−1 −xN−2‖ds

Also
‖x1 −x0‖ ≤

∫ z

z0

‖[A(s) ·x0]‖ds

≤ M (z− z0)

where
M = K ‖x0‖

Induction on N ≥ 1 yields

‖xN −xN−1‖ ≤ MKN−1 (z− z0)
N

N!
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By our assumption that R is an open connected set then the set R = {(x+ y · i) ∈ C :
x ∈ (e, f ), y ∈ (c,d)} can be represented this way and hence let b = ( f − e) and a =
i · (d − c)
Since N! ≥ (N −1)! and z− z0 < b−a we have

‖xN −xN−1‖ ≤ MKN−1 (z− z0)
N

(N −1)!
≤ MKN−1 (b−a)N

(N −1)!

Since
∞

∑
N=1

MKN−1 (b−a)N

(N −1)!
= M(b−a)eK(b−a)

by Weierstrass M-test(Theorem 1.1.20) we conclude that the series ∑
∞
N=1 [xi,N − xi,N−1]

converges uniformly for all z ∈ E. But

xi,N(z) =
N−1

∑
k=1

[
xi,k+1(z)− xi,k(z)

]
+ xi,1

Thus, the sequence {xi,N}∞

N=1 converges uniformly to a function xi(z) for all z ∈ E
and hence the function xi(z) is a continuous function (Theorem 1.1.18). Also, we can
interchange the order of taking limits and integration for such sequences. Therefore

x(z) = lim
N→∞

xN(z)

= x0 + lim
N→∞

∫ z

z0

(A(s)xN−1(s))ds

= x0 +
∫ z

z0

lim
N→∞

(A(s)xN−1(s))ds

= x0 +
∫ z

z0

A(s)x(s)ds

This shows that x(z) is a solution to the integral equation Eqn 2 and therefore a solution
to Eqn 1.

Uniqueness

Now, the uniqueness of solution to Eqn 2 follows from Gronwall’s Inequality (Theorem
1.1.23). Suppose that y(z) and r(z) are two solutions to the initial value problem Eqn
2.
Let E = {(x+ y · i) ∈ C : x ∈ [m,n], y ∈ [l,o]} Then for all z ∈ E we have

‖y(z)− r(z)‖ ≤
∫ z

z0

K‖y(s)− r(s)‖ds

Letting u(z) = ‖y(z)− r(z)‖ we have

0 ≤ ℜ{u(z)} ≤ ℜ{
∫ z

z0

Ku(s)ds}
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so that by Gronwall’s inequality by splitting the components into the real part with C =
0 and h(z) = K, we find u(z) := 0 in [m,n] = ℜ{E} and therefore ℜ{y(z)}= ℜ{r(z)}
for all z ∈ ℜ{E} and

0 ≤ ℑ{u(z)} ≤ ℑ{
∫ z

z0

Ku(s)ds}

so that by Gronwall’s inequality by splitting the components into the imaginary part
with C = 0 and h(z) = K, we find u(z) := 0 in [l,o] = ℑ{E} and therefore ℑ{y(z)} =
ℑ{r(z)} for all z ∈ ℑ{E}. Combining the above two results in y(z) = r(z) ∀z ∈ E. This
completes a proof of the Uniqueness for Eqn 1.

3.1.4 If Part
Now finally we have dim(Ker(L)) = n = dim(V n

R ).

Proof

Let L be defined as in Theorem 1.1.21.

Then Choose z0 ∈ I. Define T : Ker(L)→ Cn by

Ty :=
(

y(z0) ,y′ (z0) , . . . ,y(n−1) (z0)
)

As T is linear(Theorem 1.1.21) and then by uniqueness theorem, T (y) = 0 implies
y = 0. Therefore, T is one-to-one. The existence of solution shows that T is onto.
Thus, T is bijective. Hence dim(Ker(L)) = n which is basically our solution space
(dim(V n

R )).

3.1.5 Only If Part
=⇒ Now we come to the if part of the proof ie to prove that if dim(V R

n ) = n and
a j , j ∈ {0,1,2 · · ·n− 1} are continuous in R then this implies that all the coefficient
functions a j , j ∈ {0,1,2 · · ·n−1} are all analytic in R.

Before proving it let me give an example for the case n = 1. Let us consider the
homogeneous equation

y′ = a(z) · y
where a(z) is continuous in R. Since our solution space is V 1

R that means we have
only 1 solution. Let this solution be f (z) which is also a non-trivial solution of the
above equation. If it was a trivial solution then there is nothing to consider as Constant
functions are all analytic.

Now consider a point z0 ∈ R where f (z0) 6= 0 . Then we have the resulting equation

f ′(z)
f (z)

= a(z)

which is analytic in some neighbourhood of z0 due to the fact that f ′(z)
f (z) is holomorphic

in some neighbourhood of z0 and since holomorphic implies analytic we get that a(z)
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is analytic in some neighbourhood of z0, and therefore a(z) is analytic ∀z ∈ R where
f (z) 6= 0. Now by applying Theorem 1.1.10 and since a(z) is continuous in R we get
that a(z) is analytic in R. Hence proved as an example for n = 1.

Now to prove the general case we proceed by induction.

Base Case

As stated by the example above that proves the base case when n = 1.

Inductive Hypothesis

Assume this holds true for some positive integer n ie

y(n) = an−1y(n−1)+an−2y(n−2)+ · · ·+a0y,

Induction

Now consider a homogeneous linear differential equation of order n+1.(Eqn 1)

y(n+1) = any(n)+an−1y(n−1)+ · · ·+a0y

where ak ,k ∈ {0,1 · · ·n} are continuous functions in R.

Now let (V n+1
R ) be the solution set of the above equation with the dimension of it

being n+1.
Let y1,y2 · · ·yn+1 be the basis for this vector space of dimension n+1. Now choose

z0 ∈ R such that y1(z0) 6= 0. Let us define D to be the neighbourhood of z0 such that
y1(z) 6= 0, ,z ∈ D. Then consider the set of n functions in this manner

{y2

y1
,
y3

y1
, · · · yn+1

y1
}

are all analytic in D as y1z0 6= 0.
Now define Yk = ( yk

y1
)
′
, k = 2,3 · · ·n+1. Then Y2 · · ·Yn+1 are a set of n functions that

are analytic in D.
Now we will show that Y2,Y3 · · ·Yn+1 are all linearly independent in D.
Suppose ∑

n+1
k=2 ckYk = 0. Then (

∑
n+1
k=2 ckyk

y1

)′

= 0

Thus, we must have the inside a constant function, say C. Then

∑
n+1
k=2 ckyk

y1
=C

This gives a linear relation
n+1

∑
k=2

ckyk −Cy1 = 0
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Since y1, . . . ,yn+1 are linearly independent, we must have

C = c2 = · · ·= cn+1 = 0

This shows that Y2, . . . ,Yn+1 are linearly independent in D.

This proves our claim and now we reduce the order of Eqn 1 by 1 as we know the
solution y1 and then we get the fact that ∀k ∈ {2,3 · · ·n+ 1} Yk is a solution for this
reduced n’th order homogeneous equation as also done in the class we obtain ie Eqn 2

u(n) = cn−1u(n−1)+ cn−2u(n−2)+ · · ·+ c0u

in D with coefficients cn−1,cn−2, . . . ,c0, continuous in D, where

cn−1 = y−1
1

[
−
(

n+1
1

)
y′1 +any1

]
cn−2 = y−1

1

[
−
(

n+1
2

)
y′′1 +

(
n
1

)
any′1 +an−1y1

]
cn−3 = y−1

1

[
−
(

n+1
3

)
y′′′1 +

(
n
2

)
any′′1 +

(
n−1

1

)
an−1y′1 +an−2y1

]
c0 = y−1

1

[
−
(

n+1
n

)
y(n)1 +

(
n

n−1

)
any(n−1)

1 +

(
n−1
n−2

)
an−1y(n−2)

1 + · · ·+a1y1

]

or in general cn−k = y−1
1

[
−
(

n+1
k

)
yk

1 +∑
k−1
i=0

(
n− i
k− i

)
an−iyk−i

1

]
Now let us set V n

D to be the solution set of Eqn 2 in D. Since we know that the set

{Yk : k ∈ {2,3 · · ·n+1}}

is a linearly independent set it implies that our solution space has dimension n ie
dim(V n

D) = n.
Now applying the inductive hypothesis then we gain that each

{ak : k ∈ {1,2 · · ·n}}

in analytic in D and since by Eqn 1 holds ∀z ∈ D we get that a0 is analytic in D , which
implies

a ∈ {ak : k ∈ {0,1,2 · · ·n}} is analytic at each point z ∈ R such that y1(z) 6= 0

Then again since we already know that the zeros of y1 are isolated (Theorem 1.1.18)
and each ak is continuous in R we get that each ak is analytic in R.

Q.E.D
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