
Neural Operators: 
Machine Learning 
in Function Spaces

Robert Joseph George

PhD Student Math & CS



Rise of Deep Learning

• Neural Networks such as CNN, AlexNet, LSTM, ResNet, UNet, EfficientNet, 

MobileNet, Transformer, ViT, Diffusion Models.

Compute + Domain Specific metrics                      Progress in CV + Language



Real world domain (Function) -> Data (Function)

Weather forecasting

Los Angeles Basin

Protein Engineering

Fusion

However, we should view them as functions 
and not just time-series or pictures.



Numerical Solvers
• Traditionally we model these phenomena 

using differential and algebraic equations. 

Examples include Darcy, Navier-Stokes, 

Helmotz etc.) 

• Create numerical solvers to solve these 

equations at a certain discretization 

(resolution). For example: Finite difference, 

elements etc.

−∇. 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓(𝑥)

𝒢

Darcy Flow:

Input: diffusion coefficients, 𝑎′𝑠 Output: solutions, 𝑢′𝑠

Finer discretization      Converge to ground 
truth operator (more accurate solution)



Limitations

• Generating good data is hard.

• Solvers are not differentiable; Not good for inverse problems 

• Hard to incorporate domain knowledge into the solver

• Massive computation

• Discretization dependent



Moving on to learning Functions

• The classical development of neural 
networks has been primarily for 
mappings between a finite-
dimensional Euclidean space.

• However, many problems in physics 
and math involve learning the 
mapping between function spaces, 
which poses a limitation on the 
classical neural network-based 
methods. 

• For a bold example, images should 
be considered as functions of light 
defined on a continuous region 
instead of as 32 x 32-pixel vectors.



Discretization Agnostic Learning



Neural Operator (What are they?)

In mathematics, operators are usually referring to the mappings 
between function spaces.  Consider a general differential equation 
represented as 

                                                  𝐿𝑢 =  𝑓

where 𝑢 and 𝑓 are functions defined on the physical domain. 
Effectively, the task is akin to learning an operator, often seen as the 
inverse of 𝐿, capable of mapping the given function 𝑓 back to the 
desired function 𝑢. 

To deal with this problem, we propose operator learning. By 
encoding specific structures, we let the neural network learn the 
mapping of functions and generalize among different resolutions. 
As a result, we can first use a numerical method to generate some 
less-accurate, low-resolution data, but the learned solver can still 
give reasonable, high-resolution predictions. In some sense, both 
training and evaluation can be pain-free.



Discretization
-Convergent Converging solution



Math of Neural Operators

Darcy Flow PDE

Given 𝑓(𝑥) and 𝑎(𝑥) find 𝑢 𝑥  

Reformulation of the PDE
Cause why not? Here basically 𝐿𝑎𝑢 is the 
differential operator which depends on 𝑎 
and denotes the LHS like in our example.

Green’s Function
Surprisingly in mathematics there is this 
notion of a green’s function 𝐺𝑎(𝑥,⋅) which 
can give us a unique solution to the 
problem! ( For more details check the 

paper). Very cool right?

Discretization of 𝑓 and 𝑎
Cause computers take discrete inputs

Example 

Formula the green’s function as a 
kernel via a neural network 𝜅 which 
depends on 𝑎.

Overall Algorithm 

Solution 

Architecture 



From Neural 
networks to 
Neural Operators

• Integral operator outputs functions (not just finite-dimensional 
vectors).

• Integral operator is discretization agnostic and discretization 
convergent. 

• Neural Operators are universal approximator of operators.



Architectures



Graph Neural Operator (GNO)
NEURAL OPERATOR: LEARNING MAPS BETWEEN FUNCTION SPACES WITH APPLICATIONS TO PDES

Figure 4: V-cycle

Left: the multi-level discretization. Right: one V-cycle iteration for the multipole neural operator.

2005): starting from a discretization with J1 = J nodes, we impose inducing points of size

J2, J3, . . . , JL which all admit a low-rank kernel matrix decomposition of the form (15). The orig-

inal J ⇥ J kernel matrix K l is represented by a much smaller J l ⇥ J l kernel matrix, denoted by

K l ,l . As shown in Figure 3, K 1 is full-rank but very sparse while K L is dense but low-rank. Such

structure can be achieved by applying equation (15) recursively to equation (19), leading to the

multi-resolution matrix factorization (Kondor et al., 2014):

K ⇡ K 1,1 + K 1,2K 2,2K 2,1 + K 1,2K 2,3K 3,3K 3,2K 2,1 + · · · (20)

whereK 1,1 = K 1 represents theshortest range, K 1,2K 2,2K 2,1 ⇡ K 2, represents thesecond shortest

range, etc. The center matrix K l ,l is a J l ⇥ J l kernel matrix corresponding to the l-level of the

discretization described above. The matrices K l+ 1,l , K l ,l+ 1 are J l+ 1 ⇥ J l and J l ⇥ J l+ 1 wide and

long respectively block transition matrices. Denote vl 2 RJ l ⇥n for the representation of the input

v at each level of the discretization for l = 1, . . . , L , and ul 2 RJ l ⇥n for the output (assuming the

inputs and outputs has the same dimension). We define the matrices K l+ 1,l , K l ,l+ 1 as moving the

representation vl between different levels of the discretization via an integral kernel that we learn.

Combining with the truncation idea introduced in subsection 4.1, we define the transition matrices

as discretizations of the following integral kernel operators:

K l ,l : vl 7! ul =

Z

B (x,r l , l )
l ,l (x, y)vl (y) dy (21)

K l+ 1,l : vl 7! ul+ 1 =

Z

B (x,r l + 1, l )
l+ 1,l (x, y)vl (y) dy (22)

K l ,l+ 1 : vl+ 1 7! ul =

Z

B (x,r l , l + 1 )
l ,l+ 1(x, y)vl+ 1(y) dy (23)

where each kernel l ,l0 : D ⇥ D ! Rn⇥n is parameterized as a neural network and learned.

V-cycle Algor ithm We present a V-cycle algorithm, see Figure 4, for efficiently computing (20).

It consists of two steps: the downward pass and the upward pass. Denote the representation in

downward passand upward passby v̌ and v̂ respectively. In thedownward step, thealgorithm starts

from the fine discretization representation v̌1 and updates it by applying a downward transition

19

Suppose we parameterize the kernel as a Neural Network.



Fourier Neural Operator (FNO)

Again note that map 𝐾: 𝑣𝑡 → 𝑣𝑡+1 is parameterized as 
 𝑣′ 𝑥 = ∫ 𝑘 𝑥, 𝑦 𝑣 𝑦 𝑑𝑦 + 𝑊𝑣(𝑥)
Where 𝑘 is a kernel function and 𝑊 is the bias term. Now if 
we restrict  𝑘 𝑥, 𝑦 = 𝑘(𝑥 − 𝑦) then we get that our integral is 
indeed a convolution operator, which is a natural choice 
from the perspective of fundamental solutions. We can 
exploit the Fast Fourier Transform to do a convolution in 
Fourier space in quasilinear time.

The Fourier layer consists of three steps:

1. Fourier transform 𝐹
2. Linear transform on the lower Fourier modes R – 𝐾𝑚𝑎𝑥

3. Inverse Fourier transform 𝐹−1

Filters in convolution neural networks are usually local. They are 

good to capture local patterns such as edges and shapes. Fourier 

filters are global sinusoidal functions. They are better for 

representing continuous functions.Note: When the input function is given on a regular grid



Other Architectures

Neural 
Operators

FNO

PINO

FNO-
Transformer

CoDA-NO

UNO

Differential 
NO

MNO

IFNO

SFNO

UQO

GNO

GNO-FNO

GINO

Multipole 
GNO

Diffusion NO

Low Ranked 
NO

Convolution 
NO

DeepONets

Multiwavelet 
NO

Generative 
Adversial NO

Spectral NO

Hyena Neural 
Operators

PCANN

Lots of variants of Neural Operators 
depending on how you parameterize 

the kernel.



Zero shot super resolution

Note: The data 
contains the effect of 

high-resolution 
components of the 

physics because the 
data is assumed from 
real world (very high 

resolution solver).



Universal Approximators of Operators

Learning happens on discretized data



Big Impact Applications



Optimization difficulties in FNO

At the core of FNO is a spectral layer that leverages a 

discretization-convergent representation in the Fourier domain, 

which learns weights over a fixed set of frequencies. However, 

there are optimization difficulties in the training of FNO. However, 

training FNO presents two significant challenges, particularly in 

large-scale, high-resolution applications

1. Computing Fourier transform on high-resolution inputs is 

computationally intensive but necessary since fine-scale 

details are needed for solving many PDEs, such as fluid 

flows.

2. Selecting the relevant set of frequencies in the spectral 

layers is challenging, and too many modes can lead to 

overfitting, while too few can lead to underfitting.



Incremental FNO

Instead of fixing the frequency modes and data 
resolution, we propose iFNO that progressively 
augments both frequency modes and training resolution.

• Start from minimal frequency modes and lowest 
training resolution.

• When the optimization quality is not improved, 
increase both frequency modes and training 
resolution.

• Repeat the process multiple times until the network 
converges.

Advantages:

1. iFNO improves generalization performance by regularizing frequency evolution 

and training resolution in particular a 10% lower testing and using 20% fewer 

frequency modes compared to the existing FNO.

2. iFNO reduces training cost as few frequency modes require less parameters, 

and low training resolution requires less dimensionality achieving a 30% faster 

performance, enabling larger scale simulations.

Why does it work?
• iFNO follows spectral bias in deep neural networks

Spectral bias suggests that neural networks prioritize the 

learning of low-frequency components of the target 

function.

• iFNO adds explicit constraints over frequency 

modes and training resolution

Additional constraints further regularize the training of 

FNO.



Moving towards a foundational model

Existing neural operator architectures face challenges when 
solving Multiphysics problems with coupled PDEs, due to 
complex geometries, interactions between physical variables, 
and the lack of large amounts of high-resolution training data. 

• The architecture should not be restricted to a fixed number 
of physical variables, allowing it to handle PDEs with 
varying numbers of variables.

• It should be able to learn and predict different PDE systems, 
even when the number of physical variables differs between 
the training and target systems.

• When the training and target PDE systems have overlapping 
physical variables, the architecture should allow for transfer 
of learned knowledge between the systems.



Codomain Attention Neural Operator - 
Architecture

1. Permutation Equivariant Neural Operator: This allows CoDA-NO to process vector-valued input functions 𝑎 =
𝑎1, 𝑎2, … , 𝑎𝑑 , where each 𝑎𝑖 represents a different physical variable like velocity, pressure etc. It applies the same 

integral or pointwise operator to each component 𝑎𝑖  sharing weights across variables. 

2. CoDA-NO Layer: This is the core innovation. It extends the self-attention mechanism from standard transformers 
to operate on functions instead of finite-dimensional vectors. Specifically, for an input vector-valued function 𝑤 =

𝑤1, 𝑤2, … , 𝑤𝑑 : 

1. It tokenizes w along the codomain/channel dimension into separate token functions 𝑤𝑖 treating each physical 
variable 𝑤𝑖 as a token.

2. For each 𝑤𝑖 , it computes query 𝑞𝑖  , key 𝑘𝑖 , and value 𝑣𝑖 functions using learnable operators 𝑄, 𝐾, 𝑉.
3. It computes weighted sums of the value functions 𝑣𝑖 , using weights from dot products between 𝑞𝑖  and k𝑖  in 

function space.
4. This gives output token functions 𝑜𝑖  for each variable.
5. Finally, it concatenates these 𝑜𝑖  back into the output vector-valued function 𝑜.



CoDA-NO Architecture (Cont’d)

1. Variable Specific Positional Encoding (VSPE): It learns positional encodings 𝑒𝑗 for each input variable 𝑎𝑗, 

concatenating 𝑒𝑗 with 𝑎𝑗 to obtain extended input functions. Then we just applied a shared point wise 

lifting operator to all of these extended input functions.
2. Function Space Normalization: It extends normalization layers like BatchNorm to operate on functions 

instead of vectors.

Lastly, to effectively handle non-uniform complex geometries, we follow the GINO architecture where a 
GNO is used as an encoding and decoding module. We note that all of the integral operators are FNO. 
Finally, by tokenizing along the codomain and applying self-attention there, CoDA-NO can explicitly model 
interactions between different physical variables of multiphysics PDEs within a single model. 



CoDA-NO – Diagram



Codomain Attention Neural 
Operator (Training)

Self-supervised Pretraining:

• The objective is to train the model to reconstruct the original input 
function from its masked version.

• The input function is masked by setting values of a percentage of mesh 
points to zero for some variables, or by completely masking certain 
variables.

• The model's encoding component acts as the Encoder, while the decoding 
component is the Reconstructor during this phase

Supervised Fine-tuning:

• The Reconstructor from the pretraining phase is replaced by a randomly 
initialized Predictor module in the decoding component.

• The parameters of the Encoder and variable-specific positional encodings 
(VSPEs) are initialized from the pretrained weights.

• If the fine-tuning (target) PDE introduces new variables not present during 
pretraining, additional VSPEs are trained for these new variables to adapt 
to the expanded set of variables.



Datasets

1. PDEBench features a much wider range of PDEs than existing benchmarks. 
Datasets employed in our study encompass diverse PDE types and 
parameters like Navier-Stokes equations, diffusion-reaction equations, and 
shallow-water equations.

2. Fluid Dynamics Problem (NS): Governed by the Navier-Stokes equation
1. Involves a Newtonian, incompressible fluid impinging on a rigid 

cylinder with an attached rigid strap. The physical variables are the 
fluid velocity (u) and pressure (p)

3. Fluid-Structure Interaction Problem (NS+EW): Coupled system governed by 
both the Navier-Stokes equation for fluid and the Elastic wave equation for 
the solid

1. Involves a Newtonian, incompressible fluid interacting with an elastic, 
compressible solid object (cylinder with an attached deformable elastic 
strap).The physical variables are the fluid velocity (u), pressure (p), and 
the solid displacement field (d).



Results

•Model: CoDA-NO outperforms all baselines 

•Pre-training: 

•NS+EW pre-training performs best overall 

•NS pre-training also effective, especially for 

fluid dynamics (NS) tasks 

•Few-shot learning: 

•CoDA-NO shows significant improvement with 

limited data (5-25 samples) 

•Performance gap narrows but remains as 

sample size increases to 100 

•Viscosity/Reynolds number: 

•Consistent performance across Re = 400 and 

Re = 4000 

•Adapts well to more turbulent flows (Re = 

4000) 

•Task generalization: 

•Effectively transfers from fluid dynamics (NS) 

to fluid-structure interaction (NS+EW) 



Results

•Full CoDA-NO: 

•Best performance across all scenarios 

•Especially effective with few-shot learning (5-25 

samples) 

•Impact of Components: 

•CoDA-NO without VSPE & Norm: Significant 

performance drop 

•Adding CoDA-NO alone: Major improvement, especially 

for NS+EW 

•VSPE: Critical for model convergence with limited data 

•Normalization: Essential for effective training 

•Pre-training Effects: 

•NS+EW pre-training: Best overall performance 

•NS pre-training: Effective, especially for NS tasks 

•Generalization: 

•Full CoDA-NO shows best adaptation from NS to 

NS+EW tasks 

•Key Takeaway: All components (CoDA-NO, VSPE, 

Normalization) are crucial for optimal performance and 

generalization 



Results

Zero-Shot Super Resolution Performance
•Task: Fluid-Solid (NS-EW) Interaction Problem
•Setting: Trained on 1317 mesh points, tested on 2193 points

Key Findings:
1.CoDA-NO outperforms all baselines significantly
2.Pre-training improves performance: 

1. NS pre-training slightly better than NS-ES pre-training
3.Performance across viscosities (𝜇): 

1. Best: 𝜇 = 5
2. Good: 𝜇 = 10
3. Challenging: 𝜇 = 1

4.Baseline comparisons: 
1. ViT performs best among baselines
2. U-Net and DeepO struggle most with this task

Conclusion: CoDA-NO demonstrates superior generalization to higher resolution 
meshes without specific training.



Results

•Single-Physics PDEs: 

•Shallow Water Equations (SWE): 

•CoDA-NO: 0.04072 (12% improvement over FNO) 

•Diffusion Equation (DIFF): 

•CoDA-NO: 0.00810 (43% improvement over FNO) 

•Multi-Physics Dataset (NS+DIFF+SWE): 

•CoDA-NO: 0.00302 (slightly higher than FNO's 0.00118) 

•Reconstruction Error: 

•CoDA-NO consistently lower than FNO across all datasets 

•Model Size Comparison: 

•CoDA-NO: 11 million parameters 

•FNO: 1.9 billion parameters (98% larger) 

•Performance vs. DPOT: 

•Comparable performance to DPOT on DIFF dataset 

•CoDA-NO: 0.0081 vs. DPOT-L-500: 0.0073 

•Achieved with significantly fewer parameters and training epochs



Overall picture

1. Superior Performance: Outperforms baselines in few-shot learning and zero-
shot super-resolution tasks

2. Adaptability: Seamlessly handles varying numbers of physical variables and 
complex geometries

3. Generalization: Effectively transfers knowledge between single and 
multiphysics problems

4. Robustness: Maintains performance across various Reynolds numbers, 
including turbulent flows

CoDA-NO demonstrates potential as a versatile foundation model for solving 
diverse multiphysics PDEs, opening new avenues for efficient scientific 
computing.



Some open problems in Neural Operator

• Scaling up is a big challenge

• The resolution in the intermediate layers is designer choice, how it should be done?

• Neural Operator architectures are still primitive.

• What can these architectures bring to CV?

• Uncertainty Quantification is essential, but how can it be done in function spaces?

• Reinforcement learning and control + Neural Operators = How can it be done?

• Unsupervised learning – representation learning in function spaces?

• What about meta learning, adversarial robustness, transfer learning etc?

Takeaway: Lots to discover in this field. 



Collaboration

• Be aware of challenges:

• Often domain experts are pessimistic about 
ML

• Initial ML methods are often not as good as 
the existing paradigms

• Domain experts don’t know much ML as ML-
ists don’t know much about other fields.

• Needs joint development and language bridge.

• The data is not generated having ML in mind

Caltech + UChicago AI4Science Initiative



Codebase

neuraloperator/neuraloperator: Learning in infinite dimension with neural operators

neuraloperator/neuraloperator: Learning in infinite dimension with neural operators

Neural Operator is an open-source library with a permissive license for scientific ML. It provides a unified API for 
different neural architectures for operator learning. Our mission is to democratize state-of-the-art algorithms like yours 
through a unified codebase.

In particular,  we have added a Physics-based Informed Neural Operator (PINO) as an extension of PINNs that 
overcomes the critical limitations by incorporating both data and physics losses at varying resolutions. This allows for 
better generalization and extrapolation to resolutions beyond the training data and is much more suitable for multi-
scale dynamic PDE systems.

The New codebase for all Neural Operators are present here: neuraloperator/neuraloperator: Learning in infinite 
dimension with neural operators

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/neuraloperator


Must watch Resources

• https://youtu.be/_j7bceE9AyA - ICML 2024 Tutorial"Machine Learning on Function spaces – By 
Kamyar Azizzadensheli

• https://youtu.be/6bl5XZ8kOzI - AI That Connects the Digital and Physical Worlds | Anima 
Anandkumar | TED

• https://youtu.be/PpTkY8lgV3c - Tutorial on Neural Operators by Zongyi Li

• https://youtu.be/y5EJr4ofGOc - ML for Solving PDEs: Neural Operators on Function Spaces by 
Anima Anandkumar

• ETH Zürich DLSC: Course Introduction – YouTube – Playlist by ETH on scientific computing

• https://youtu.be/W8PybqAk6Ik - Fourier Neural Operator (FNO) [Physics Informed Machine 
Learning] by Steve Brunton

https://youtu.be/_j7bceE9AyA
https://youtu.be/6bl5XZ8kOzI
https://youtu.be/PpTkY8lgV3c
https://youtu.be/y5EJr4ofGOc
https://www.youtube.com/watch?v=y6wHpRzhhkA&list=PLJkYEExhe7rYY5HjpIJbgo-tDZ3bIAqAm
https://youtu.be/W8PybqAk6Ik
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AI for science
Ai of Science
Ai + Science

Two Nobel Prizes this year:)

Any Questions?

Conclusion

Future of science 
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