
Neural Operators:
Machine Learning
in Function Spaces

Robert Joseph George

PhD Student Math & CS

Rise of Deep Learning

• Neural Networks such as CNN, AlexNet, LSTM, ResNet, UNet, EfficientNet,

MobileNet, Transformer, ViT, Diffusion Models.

Compute + Domain Specific metrics Progress in CV + Language

Real world domain (Function) -> Data (Function)

Weather forecasting

Los Angeles Basin

Protein Engineering

Fusion

However, we should view them as functions
and not just time-series or pictures.

Numerical Solvers
• Traditionally we model these phenomena

using differential and algebraic equations.

Examples include Darcy, Navier-Stokes,

Helmotz etc.)

• Create numerical solvers to solve these

equations at a certain discretization

(resolution). For example: Finite difference,

elements etc.

−∇. 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓(𝑥)

𝒢

Darcy Flow:

Input: diffusion coefficients, 𝑎′𝑠 Output: solutions, 𝑢′𝑠

Finer discretization Converge to ground
truth operator (more accurate solution)

Limitations

• Generating good data is hard.

• Solvers are not differentiable; Not good for inverse problems

• Hard to incorporate domain knowledge into the solver

• Massive computation

• Discretization dependent

Moving on to learning Functions

• The classical development of neural
networks has been primarily for
mappings between a finite-
dimensional Euclidean space.

• However, many problems in physics
and math involve learning the
mapping between function spaces,
which poses a limitation on the
classical neural network-based
methods.

• For a bold example, images should
be considered as functions of light
defined on a continuous region
instead of as 32 x 32-pixel vectors.

Discretization Agnostic Learning

Neural Operator (What are they?)

In mathematics, operators are usually referring to the mappings
between function spaces. Consider a general differential equation
represented as

 𝐿𝑢 = 𝑓

where 𝑢 and 𝑓 are functions defined on the physical domain.
Effectively, the task is akin to learning an operator, often seen as the
inverse of 𝐿, capable of mapping the given function 𝑓 back to the
desired function 𝑢.

To deal with this problem, we propose operator learning. By
encoding specific structures, we let the neural network learn the
mapping of functions and generalize among different resolutions.
As a result, we can first use a numerical method to generate some
less-accurate, low-resolution data, but the learned solver can still
give reasonable, high-resolution predictions. In some sense, both
training and evaluation can be pain-free.

Discretization
-Convergent Converging solution

Math of Neural Operators

Darcy Flow PDE

Given 𝑓(𝑥) and 𝑎(𝑥) find 𝑢 𝑥

Reformulation of the PDE
Cause why not? Here basically 𝐿𝑎𝑢 is the
differential operator which depends on 𝑎
and denotes the LHS like in our example.

Green’s Function
Surprisingly in mathematics there is this
notion of a green’s function 𝐺𝑎(𝑥,⋅) which
can give us a unique solution to the
problem! (For more details check the

paper). Very cool right?

Discretization of 𝑓 and 𝑎
Cause computers take discrete inputs

Example

Formula the green’s function as a
kernel via a neural network 𝜅 which
depends on 𝑎.

Overall Algorithm

Solution

Architecture

From Neural
networks to
Neural Operators

• Integral operator outputs functions (not just finite-dimensional
vectors).

• Integral operator is discretization agnostic and discretization
convergent.

• Neural Operators are universal approximator of operators.

Architectures

Graph Neural Operator (GNO)
NEURAL OPERATOR: LEARNING MAPS BETWEEN FUNCTION SPACES WITH APPLICATIONS TO PDES

Figure 4: V-cycle

Left: the multi-level discretization. Right: one V-cycle iteration for the multipole neural operator.

2005): starting from a discretization with J1 = J nodes, we impose inducing points of size

J2, J3, . . . , JL which all admit a low-rank kernel matrix decomposition of the form (15). The orig-

inal J ⇥ J kernel matrix K l is represented by a much smaller J l ⇥ J l kernel matrix, denoted by

K l ,l . As shown in Figure 3, K 1 is full-rank but very sparse while K L is dense but low-rank. Such

structure can be achieved by applying equation (15) recursively to equation (19), leading to the

multi-resolution matrix factorization (Kondor et al., 2014):

K ⇡ K 1,1 + K 1,2K 2,2K 2,1 + K 1,2K 2,3K 3,3K 3,2K 2,1 + · · · (20)

whereK 1,1 = K 1 represents theshortest range, K 1,2K 2,2K 2,1 ⇡ K 2, represents thesecond shortest

range, etc. The center matrix K l ,l is a J l ⇥ J l kernel matrix corresponding to the l-level of the

discretization described above. The matrices K l+ 1,l , K l ,l+ 1 are J l+ 1 ⇥ J l and J l ⇥ J l+ 1 wide and

long respectively block transition matrices. Denote vl 2 RJ l ⇥n for the representation of the input

v at each level of the discretization for l = 1, . . . , L , and ul 2 RJ l ⇥n for the output (assuming the

inputs and outputs has the same dimension). We define the matrices K l+ 1,l , K l ,l+ 1 as moving the

representation vl between different levels of the discretization via an integral kernel that we learn.

Combining with the truncation idea introduced in subsection 4.1, we define the transition matrices

as discretizations of the following integral kernel operators:

K l ,l : vl 7! ul =

Z

B (x,r l , l)
l ,l (x, y)vl (y) dy (21)

K l+ 1,l : vl 7! ul+ 1 =

Z

B (x,r l + 1, l)
l+ 1,l (x, y)vl (y) dy (22)

K l ,l+ 1 : vl+ 1 7! ul =

Z

B (x,r l , l + 1)
l ,l+ 1(x, y)vl+ 1(y) dy (23)

where each kernel l ,l0 : D ⇥ D ! Rn⇥n is parameterized as a neural network and learned.

V-cycle Algor ithm We present a V-cycle algorithm, see Figure 4, for efficiently computing (20).

It consists of two steps: the downward pass and the upward pass. Denote the representation in

downward passand upward passby v̌ and v̂ respectively. In thedownward step, thealgorithm starts

from the fine discretization representation v̌1 and updates it by applying a downward transition

19

Suppose we parameterize the kernel as a Neural Network.

Fourier Neural Operator (FNO)

Again note that map 𝐾: 𝑣𝑡 → 𝑣𝑡+1 is parameterized as
 𝑣′ 𝑥 = ∫ 𝑘 𝑥, 𝑦 𝑣 𝑦 𝑑𝑦 + 𝑊𝑣(𝑥)
Where 𝑘 is a kernel function and 𝑊 is the bias term. Now if
we restrict 𝑘 𝑥, 𝑦 = 𝑘(𝑥 − 𝑦) then we get that our integral is
indeed a convolution operator, which is a natural choice
from the perspective of fundamental solutions. We can
exploit the Fast Fourier Transform to do a convolution in
Fourier space in quasilinear time.

The Fourier layer consists of three steps:

1. Fourier transform 𝐹
2. Linear transform on the lower Fourier modes R – 𝐾𝑚𝑎𝑥

3. Inverse Fourier transform 𝐹−1

Filters in convolution neural networks are usually local. They are

good to capture local patterns such as edges and shapes. Fourier

filters are global sinusoidal functions. They are better for

representing continuous functions.Note: When the input function is given on a regular grid

Other Architectures

Neural
Operators

FNO

PINO

FNO-
Transformer

CoDA-NO

UNO

Differential
NO

MNO

IFNO

SFNO

UQO

GNO

GNO-FNO

GINO

Multipole
GNO

Diffusion NO

Low Ranked
NO

Convolution
NO

DeepONets

Multiwavelet
NO

Generative
Adversial NO

Spectral NO

Hyena Neural
Operators

PCANN

Lots of variants of Neural Operators
depending on how you parameterize

the kernel.

Zero shot super resolution

Note: The data
contains the effect of

high-resolution
components of the

physics because the
data is assumed from
real world (very high

resolution solver).

Universal Approximators of Operators

Learning happens on discretized data

Big Impact Applications

Optimization difficulties in FNO

At the core of FNO is a spectral layer that leverages a

discretization-convergent representation in the Fourier domain,

which learns weights over a fixed set of frequencies. However,

there are optimization difficulties in the training of FNO. However,

training FNO presents two significant challenges, particularly in

large-scale, high-resolution applications

1. Computing Fourier transform on high-resolution inputs is

computationally intensive but necessary since fine-scale

details are needed for solving many PDEs, such as fluid

flows.

2. Selecting the relevant set of frequencies in the spectral

layers is challenging, and too many modes can lead to

overfitting, while too few can lead to underfitting.

Incremental FNO

Instead of fixing the frequency modes and data
resolution, we propose iFNO that progressively
augments both frequency modes and training resolution.

• Start from minimal frequency modes and lowest
training resolution.

• When the optimization quality is not improved,
increase both frequency modes and training
resolution.

• Repeat the process multiple times until the network
converges.

Advantages:

1. iFNO improves generalization performance by regularizing frequency evolution

and training resolution in particular a 10% lower testing and using 20% fewer

frequency modes compared to the existing FNO.

2. iFNO reduces training cost as few frequency modes require less parameters,

and low training resolution requires less dimensionality achieving a 30% faster

performance, enabling larger scale simulations.

Why does it work?
• iFNO follows spectral bias in deep neural networks

Spectral bias suggests that neural networks prioritize the

learning of low-frequency components of the target

function.

• iFNO adds explicit constraints over frequency

modes and training resolution

Additional constraints further regularize the training of

FNO.

Moving towards a foundational model

Existing neural operator architectures face challenges when
solving Multiphysics problems with coupled PDEs, due to
complex geometries, interactions between physical variables,
and the lack of large amounts of high-resolution training data.

• The architecture should not be restricted to a fixed number
of physical variables, allowing it to handle PDEs with
varying numbers of variables.

• It should be able to learn and predict different PDE systems,
even when the number of physical variables differs between
the training and target systems.

• When the training and target PDE systems have overlapping
physical variables, the architecture should allow for transfer
of learned knowledge between the systems.

Codomain Attention Neural Operator -
Architecture

1. Permutation Equivariant Neural Operator: This allows CoDA-NO to process vector-valued input functions 𝑎 =
𝑎1, 𝑎2, … , 𝑎𝑑 , where each 𝑎𝑖 represents a different physical variable like velocity, pressure etc. It applies the same

integral or pointwise operator to each component 𝑎𝑖 sharing weights across variables.

2. CoDA-NO Layer: This is the core innovation. It extends the self-attention mechanism from standard transformers
to operate on functions instead of finite-dimensional vectors. Specifically, for an input vector-valued function 𝑤 =

𝑤1, 𝑤2, … , 𝑤𝑑 :

1. It tokenizes w along the codomain/channel dimension into separate token functions 𝑤𝑖 treating each physical
variable 𝑤𝑖 as a token.

2. For each 𝑤𝑖 , it computes query 𝑞𝑖 , key 𝑘𝑖 , and value 𝑣𝑖 functions using learnable operators 𝑄, 𝐾, 𝑉.
3. It computes weighted sums of the value functions 𝑣𝑖 , using weights from dot products between 𝑞𝑖 and k𝑖 in

function space.
4. This gives output token functions 𝑜𝑖 for each variable.
5. Finally, it concatenates these 𝑜𝑖 back into the output vector-valued function 𝑜.

CoDA-NO Architecture (Cont’d)

1. Variable Specific Positional Encoding (VSPE): It learns positional encodings 𝑒𝑗 for each input variable 𝑎𝑗,

concatenating 𝑒𝑗 with 𝑎𝑗 to obtain extended input functions. Then we just applied a shared point wise

lifting operator to all of these extended input functions.
2. Function Space Normalization: It extends normalization layers like BatchNorm to operate on functions

instead of vectors.

Lastly, to effectively handle non-uniform complex geometries, we follow the GINO architecture where a
GNO is used as an encoding and decoding module. We note that all of the integral operators are FNO.
Finally, by tokenizing along the codomain and applying self-attention there, CoDA-NO can explicitly model
interactions between different physical variables of multiphysics PDEs within a single model.

CoDA-NO – Diagram

Codomain Attention Neural
Operator (Training)

Self-supervised Pretraining:

• The objective is to train the model to reconstruct the original input
function from its masked version.

• The input function is masked by setting values of a percentage of mesh
points to zero for some variables, or by completely masking certain
variables.

• The model's encoding component acts as the Encoder, while the decoding
component is the Reconstructor during this phase

Supervised Fine-tuning:

• The Reconstructor from the pretraining phase is replaced by a randomly
initialized Predictor module in the decoding component.

• The parameters of the Encoder and variable-specific positional encodings
(VSPEs) are initialized from the pretrained weights.

• If the fine-tuning (target) PDE introduces new variables not present during
pretraining, additional VSPEs are trained for these new variables to adapt
to the expanded set of variables.

Datasets

1. PDEBench features a much wider range of PDEs than existing benchmarks.
Datasets employed in our study encompass diverse PDE types and
parameters like Navier-Stokes equations, diffusion-reaction equations, and
shallow-water equations.

2. Fluid Dynamics Problem (NS): Governed by the Navier-Stokes equation
1. Involves a Newtonian, incompressible fluid impinging on a rigid

cylinder with an attached rigid strap. The physical variables are the
fluid velocity (u) and pressure (p)

3. Fluid-Structure Interaction Problem (NS+EW): Coupled system governed by
both the Navier-Stokes equation for fluid and the Elastic wave equation for
the solid

1. Involves a Newtonian, incompressible fluid interacting with an elastic,
compressible solid object (cylinder with an attached deformable elastic
strap).The physical variables are the fluid velocity (u), pressure (p), and
the solid displacement field (d).

Results

•Model: CoDA-NO outperforms all baselines

•Pre-training:

•NS+EW pre-training performs best overall

•NS pre-training also effective, especially for

fluid dynamics (NS) tasks

•Few-shot learning:

•CoDA-NO shows significant improvement with

limited data (5-25 samples)

•Performance gap narrows but remains as

sample size increases to 100

•Viscosity/Reynolds number:

•Consistent performance across Re = 400 and

Re = 4000

•Adapts well to more turbulent flows (Re =

4000)

•Task generalization:

•Effectively transfers from fluid dynamics (NS)

to fluid-structure interaction (NS+EW)

Results

•Full CoDA-NO:

•Best performance across all scenarios

•Especially effective with few-shot learning (5-25

samples)

•Impact of Components:

•CoDA-NO without VSPE & Norm: Significant

performance drop

•Adding CoDA-NO alone: Major improvement, especially

for NS+EW

•VSPE: Critical for model convergence with limited data

•Normalization: Essential for effective training

•Pre-training Effects:

•NS+EW pre-training: Best overall performance

•NS pre-training: Effective, especially for NS tasks

•Generalization:

•Full CoDA-NO shows best adaptation from NS to

NS+EW tasks

•Key Takeaway: All components (CoDA-NO, VSPE,

Normalization) are crucial for optimal performance and

generalization

Results

Zero-Shot Super Resolution Performance
•Task: Fluid-Solid (NS-EW) Interaction Problem
•Setting: Trained on 1317 mesh points, tested on 2193 points

Key Findings:
1.CoDA-NO outperforms all baselines significantly
2.Pre-training improves performance:

1. NS pre-training slightly better than NS-ES pre-training
3.Performance across viscosities (𝜇):

1. Best: 𝜇 = 5
2. Good: 𝜇 = 10
3. Challenging: 𝜇 = 1

4.Baseline comparisons:
1. ViT performs best among baselines
2. U-Net and DeepO struggle most with this task

Conclusion: CoDA-NO demonstrates superior generalization to higher resolution
meshes without specific training.

Results

•Single-Physics PDEs:

•Shallow Water Equations (SWE):

•CoDA-NO: 0.04072 (12% improvement over FNO)

•Diffusion Equation (DIFF):

•CoDA-NO: 0.00810 (43% improvement over FNO)

•Multi-Physics Dataset (NS+DIFF+SWE):

•CoDA-NO: 0.00302 (slightly higher than FNO's 0.00118)

•Reconstruction Error:

•CoDA-NO consistently lower than FNO across all datasets

•Model Size Comparison:

•CoDA-NO: 11 million parameters

•FNO: 1.9 billion parameters (98% larger)

•Performance vs. DPOT:

•Comparable performance to DPOT on DIFF dataset

•CoDA-NO: 0.0081 vs. DPOT-L-500: 0.0073

•Achieved with significantly fewer parameters and training epochs

Overall picture

1. Superior Performance: Outperforms baselines in few-shot learning and zero-
shot super-resolution tasks

2. Adaptability: Seamlessly handles varying numbers of physical variables and
complex geometries

3. Generalization: Effectively transfers knowledge between single and
multiphysics problems

4. Robustness: Maintains performance across various Reynolds numbers,
including turbulent flows

CoDA-NO demonstrates potential as a versatile foundation model for solving
diverse multiphysics PDEs, opening new avenues for efficient scientific
computing.

Some open problems in Neural Operator

• Scaling up is a big challenge

• The resolution in the intermediate layers is designer choice, how it should be done?

• Neural Operator architectures are still primitive.

• What can these architectures bring to CV?

• Uncertainty Quantification is essential, but how can it be done in function spaces?

• Reinforcement learning and control + Neural Operators = How can it be done?

• Unsupervised learning – representation learning in function spaces?

• What about meta learning, adversarial robustness, transfer learning etc?

Takeaway: Lots to discover in this field.

Collaboration

• Be aware of challenges:

• Often domain experts are pessimistic about
ML

• Initial ML methods are often not as good as
the existing paradigms

• Domain experts don’t know much ML as ML-
ists don’t know much about other fields.

• Needs joint development and language bridge.

• The data is not generated having ML in mind

Caltech + UChicago AI4Science Initiative

Codebase

neuraloperator/neuraloperator: Learning in infinite dimension with neural operators

neuraloperator/neuraloperator: Learning in infinite dimension with neural operators

Neural Operator is an open-source library with a permissive license for scientific ML. It provides a unified API for
different neural architectures for operator learning. Our mission is to democratize state-of-the-art algorithms like yours
through a unified codebase.

In particular, we have added a Physics-based Informed Neural Operator (PINO) as an extension of PINNs that
overcomes the critical limitations by incorporating both data and physics losses at varying resolutions. This allows for
better generalization and extrapolation to resolutions beyond the training data and is much more suitable for multi-
scale dynamic PDE systems.

The New codebase for all Neural Operators are present here: neuraloperator/neuraloperator: Learning in infinite
dimension with neural operators

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/neuraloperator

Must watch Resources

• https://youtu.be/_j7bceE9AyA - ICML 2024 Tutorial"Machine Learning on Function spaces – By
Kamyar Azizzadensheli

• https://youtu.be/6bl5XZ8kOzI - AI That Connects the Digital and Physical Worlds | Anima
Anandkumar | TED

• https://youtu.be/PpTkY8lgV3c - Tutorial on Neural Operators by Zongyi Li

• https://youtu.be/y5EJr4ofGOc - ML for Solving PDEs: Neural Operators on Function Spaces by
Anima Anandkumar

• ETH Zürich DLSC: Course Introduction – YouTube – Playlist by ETH on scientific computing

• https://youtu.be/W8PybqAk6Ik - Fourier Neural Operator (FNO) [Physics Informed Machine
Learning] by Steve Brunton

https://youtu.be/_j7bceE9AyA
https://youtu.be/6bl5XZ8kOzI
https://youtu.be/PpTkY8lgV3c
https://youtu.be/y5EJr4ofGOc
https://www.youtube.com/watch?v=y6wHpRzhhkA&list=PLJkYEExhe7rYY5HjpIJbgo-tDZ3bIAqAm
https://youtu.be/W8PybqAk6Ik

Acknowledgements

Thank you to Umaa Rebbapragada for inviting me to speak at JPL.

All this work is mostly done by the team here at Caltech and Nvidia under
Anima Anandkumar.

Special thanks to Zongyi Li, Kamyar Azzizadenesheli (for slides as well), Jean
Kossaifi, Jiawei Zhao, Julius Berner, Ashiq Rahman, David Pitt. I thank the rest
of the contributors and the other members of the teams for their help and
contributions.

AI for science
Ai of Science
Ai + Science

Two Nobel Prizes this year:)

Any Questions?

Conclusion

Future of science

References

1. Neural operator: Graph kernel network for partial differential
equations, Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima
Anandkumar

2. Neural operator: Learning maps between function spaces, Nikola
Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar

3. Blog post by Zongyi Li, https://zongyi-
li.github.io/blog/2020/graph-pde/

https://zongyi-li.github.io/blog/2020/graph-pde/
https://zongyi-li.github.io/blog/2020/graph-pde/

	Slide 1: Neural Operators: Machine Learning in Function Spaces
	Slide 2: Rise of Deep Learning
	Slide 3: Real world domain (Function) -> Data (Function)
	Slide 4: Numerical Solvers
	Slide 5: Limitations
	Slide 6: Moving on to learning Functions
	Slide 7: Discretization Agnostic Learning
	Slide 8: Neural Operator (What are they?)
	Slide 9: Discretization-Convergent
	Slide 10: Math of Neural Operators
	Slide 11: From Neural networks to Neural Operators
	Slide 12: Architectures
	Slide 13: Graph Neural Operator (GNO)
	Slide 14: Fourier Neural Operator (FNO)
	Slide 15: Other Architectures
	Slide 16: Zero shot super resolution
	Slide 17: Universal Approximators of Operators
	Slide 18: Big Impact Applications
	Slide 19: Optimization difficulties in FNO
	Slide 20: Incremental FNO
	Slide 21: Moving towards a foundational model
	Slide 22: Codomain Attention Neural Operator - Architecture
	Slide 23: CoDA-NO Architecture (Cont’d)
	Slide 24: CoDA-NO – Diagram
	Slide 25: Codomain Attention Neural Operator (Training)
	Slide 26: Datasets
	Slide 27: Results
	Slide 28: Results
	Slide 29: Results
	Slide 30: Results
	Slide 31: Overall picture
	Slide 32: Some open problems in Neural Operator
	Slide 33: Collaboration
	Slide 34: Codebase
	Slide 35: Must watch Resources
	Slide 36: Acknowledgements
	Slide 37: AI for science Ai of Science Ai + Science Two Nobel Prizes this year:) Any Questions?
	Slide 38: References

