Nuclear Fusion Weather and Climate
(L%

! ¥ e “‘;: : ,‘»\\‘,

-

-

observed

Chip Design/Lithography

ensemble

Neural Operators:
Machine Learning
in Function Spaces

Robert Joseph George
PhD Student Math & CS

Caltech

Rise of Deep Learning

* Neural Networks such as CNN, AlexNet, LSTM, ResNet, UNet, EfficientNet,

MobileNet, Transformer, ViT, Diffusion Models.

Compute + Domain Specific metrics

Qutput

Probabilities

Hidden Hidden Hidden
Input layer 1 layer 2 layer 3

Add & Norm

Multi-Head

Feed Attention
Forward N3
N | (e No]
Add & Norm Macked
Multi-Head Multi-Head
Attention Attention
L¥ J
\)
Fositional A Positional
Encoding ¥ Encoding
Input QOutput
Embedding Ermbedding
Inputs Qutputs

(shifted right)

Progress in CV + Language

Fully-connected linear
output layer

32 4x4 filters

256 hidden units

16 8x8 filters
4x84x84

=T

Stack of 4 previous .
Convolutional layer
frames YR ¥

of rectified linear units

Fully-connected layer
of rectified linear units

Convolutional layer
of rectified linear units

Real world domain (Function) -> Data (Function)

2018-01-08

Protein Engineering

Ground truth

Weather forecasting

Fusion

Numerical SOI"ers owu(z,t) + u(z,t) - Vu(z,t) + Vp(z,t) = vAu(z,t) + f(x),

V- u(z,t) =0,
 Traditionally we model these phenomena w(z,0) = up(z),
using differential and algebraic equations. 50 o
Examples include Darcy, Navier-Stokes . 0 R 0
! ! ith—¥(z,t) = |— + V(z,t)| ¥(x,t)
Helmotz etc.) t 2m Qx?

« Create numerical solvers to solve these
equations at a certain discretization Darcy Flow: —V.(a(x)Vu(x)) = f(x)

Finer discretization = Converge to ground
truth operator (more accurate solution)

(resolution). For example: Finite difference,
g \
—>
|

elements etc.
Input: diffusion coefficients, a’s Output: solutions, u's

Limitations

How about we learn the solution operator?

Given a, predict u

Input function space
a € A

u € U

Qutput function space

\

Infinite dimension

Generating good data is hard.

Solvers are not differentiable; Not good for inverse problems

Hard to incorporate domain knowledge into the solver
Massive computation

Discretization dependent

Computational constraints limit model resolution
Reasonable solution operator requires high resolution = much more computes

1m
100m
1km
2
3
id
=
100km E

1980 1990 2000 2010 2020 2030 2040

STRATOCUMULUS RESOLVING

2050

2

Moving on to learning Functions

* The classical development of neural
networks has been primarily for
mappings between a finite- Inverse Problem PDE Discovery
dimensional Euclidean space. R

« However, many problems in physics
and math involve learning the
mapping between function spaces,
which poses a limitation on the
classical neural network-based
methods.

Forward Problem PDE Solvers Operator Learning

« For a bold example, images should | |

be considered as functions of light))

. . . Small data Some data Lots of data
defined on a continuous region Lots of physics Some physics No physics
instead of as 32 x 32-pixel vectors.

|
(¢))

| ()Deraror
JIJCT alUl

Input and output at fixed resolution Input and output at any resolution

Discretization Agnostic Learning

Neural Operator (What are they?)

In mathematics, operators are usually referring to the mappings
between function spaces. Consider a general differential equation
represented as

Lu = f

where u and f are functions defined on the physical domain.
Effectively, the task is akin to learning an operator, often seen as the
inverse of L, capable of mapping the given function f back to the
desired function w.

To deal with this problem, we propose operator learning. By
encoding specific structures, we let the neural network learn the
mapping of functions and generalize among different resolutions.
As a result, we can first use a numerical method to generate some
less-accurate, low-resolution data, but the learned solver can still
give reasonable, high-resolution predictions. In some sense, both
training and evaluation can be pain-free.

u(t)

Input Function

Output Function

s(t)

Spatial domain
xXED

Solve u(x)

O
o) O Neural
(@) Operator

Input function space
aEA

QOutput function space

GA-U

u€EU

One ML model for any discretization

Definition: a trained Al model is discretization-convergent if

®* We can query at any point.
* Converges upon mesh refinement to a limit.

Mesh refinement

Discretization R <= (i

Converging solution

Model NNs | DeepONets | Interpolation | Neural Operators
Property

Discretization Invariance

Is the output a function?

Can query the output at any point?

Can take the input at any point?

™| ™[XX | X
ANESENENRN
SIRSENENEN
ANENENENEN

Universal Approximation

Ground Truth Approximation

ﬁath of Neural Operators .I::::“l::::
E— _

V.- (a(a) Vu(z)) = f(z),

Error 1e-7

7.5
5.0
2.5
0.0

‘ Neural Operator Layer

u(z) =0, z€dD

=

vn[z] = NNI(I:“(I]]

wle) =o{¥fe [s¢(s,y,a(:),aw))m(mdy) frt=1,...T

Blzr)

) = NNy(vr(z))

1

=

(Law)(z) = f(z), z €D
w(@) — 0, zedD u(z) = [Gale.0)fw) dy (o) = [Wz alo),a) () dy

Meural Networks, learn function v = f(x)
Ax+w-x+ b

3 S

. . Output:
Feature vector x —> Linear function .

. e —> Label vector y

Meural Operators, learn operator u = G(a) [x(x.y)aly)du + Wialy)) + biy)

S

Input: _ ﬂutpl_.Jl::
Functiona — Linear Integral ® » —» Solution
function u

From Neural
networks to
Neural Operators

Architectures

Point-wise encoder — _— Yo (x) = P(a(x)) _—+ Point-wise decoder

Layer 2 —> 0 0 0 —) Layer L —l'@—)@

R e,

ﬁ

;D
&
'S
=

W \r

Domain — _» Co-Domain

N/ S Keyve)dut) + b

Neural Operator Layer

Graph Neural Operator (GNO)

/M Suppose we parameterize the kernel as a Neural Network.
/ \v / ®_>®_> Layer 1 > Layer 2 —> 0 0 0 —)> Layer L —h@—}@

Neural Operator Layer
A 27 (yox)v(x) Ax; \
.'IIIII

Learnable neural network«—

Local or Global
Generalization of GNNs to neural operators

ﬁ % Target Dimension

Fourier Neural Operator (FNO) .4@*;,&

Fourier layer

Again note that map K: v, — v, is parameterized as

v'(x) = [k(x, y)v(y)dy + Wu(x)
Where k is a kernel function and W is the bias term. Now if
we restrict k(x,y) = k(x — y) then we get that our integral is
indeed a convolution operator, which is a natural choice
from the perspective of fundamental solutions. We can
exploit the Fast Fourier Transform to do a convolution in - A== ._-,,,
Fourier space in quasilinear time. =N EELEL S E

= WA = .‘-. la",‘
Filters in CNN

FNO — Block + All Layers

The Fourier layer consists of three steps:

1. Fourier transform F

2. Linear transform on the lower Fourier modes R — K,,,
3. Inverse Fourier transform F~1

Fourier Filters

Filters in convolution neural networks are usually local. They are
good to capture local patterns such as edges and shapes. Fourier

filters are global sinusoidal functions. They are better for
Note: When the input function is given on a regular grid representing continuous functions.

Other Architectures

@—’@—7 Layer 1 > Layer2 > 0 0 @ > Layer L @@

Neural Operator Layer

p S kxyvm)du) + b |

Lots of variants of Neural Operators
depending on how you parameterize
the kernel.

Differential
NO

7\[e]

IFNO

SFNO

uQo

GNO-FNO

GINO

Multipole
(c]\[e}

Spectral NO

Hyena Neural
Operators

PCANN

IZero shot super resolution

Training data, t=38.24 : 1

al

08 1

Training data, t«38.24 Training data, t=38.24

Train using coarse resolution data

LX)
0.4
03

! i

02

01

° 3
)

0z

0.4 06

Directly evaluate on higher resolution (no re-training)

5 Ground Truth, t=36.55

0.9

0.8

0.7

0.6

0.5

0.4

-

0.3

0.2

~

0.2 0.4 0.6 0.8 1

Universal Approximators of Operators

Neural Operators, learn operator u = Gg(a) [161, v)a(y)dp + Wy (a(y)) + by ()
Input: o vy Output:
Functiona —> LinearIntegral ——> = Non-linearity @—> —_— fSolt:!non
unction u

« Neural Operators are universal approximator of operators.

IGo(Dr,alp,) = G'(@)llu < |Go(Dr,alp,) — Gola) u +|IGs(a) — G (@) -

“~
discretization error approximation error

Theorem (Universal approximation theorem of neural operators) :

Under a mild regularity condition, for any given arbitrary operator between general function spaces G', and any e > 0, there

exist a neural operator G4, such that,

sup [|G7(a) — G(a)lu < e

— Precision is relevant

Discretization

Generalization Approximation

Learning happens on discretized data

Big Impact Applications

Ground Truth FourCastNet

» {g ,-/-NQ\
Tt it rﬁ-

Optimization difficulties in FNO ' .-

At the core of FNO is a spectral layer that leverages a
discretization-convergent representation in the Fourier domain,
which learns weights over a fixed set of frequencies. However, Prediction
there are optimization difficulties in the training of FNO. However,
training FNO presents two significant challenges, particularly in
large-scale, high-resolution applications

1. Computing Fourier transform on high-resolution inputs is @ I~
computationally intensive but necessary since fine-scale A
details are needed for solving many PDEs, such as fluid
flows.

2. Selecting the relevant set of frequencies in the spectral
layers is challenging, and too many modes can lead to
overfitting, while too few can lead to underfitting.

Incremental FNO

Instead of fixing the frequency modes and data
resolution, we propose iFNO that progressively
augments both frequency modes and training resolution.

« Start from minimal frequency modes and lowest
training resolution.

* When the optimization quality is not improved,
increase both frequency modes and training
resolution.

* Repeat the process multiple times until the network
converges.

Why does it work?

* iIFNO follows spectral bias in deep neural networks
Spectral bias suggests that neural networks prioritize the
learning of low-frequency components of the target
function.

* iIFNO adds explicit constraints over frequency
modes and training resolution
Additional constraints further regularize the training of
FNO.

.....................

e, K lowest modes

Ve .
il — b,
FFT | S A > | truncate | == : AR
@*QW AR @ e @

iENO Block ™

pectra . N layers Spectral
Conv

Projection

Incremental
algorithm

Dynamically add modes

Dynamically increase training resolution

Advantages:

1. IFNO improves generalization performance by regularizing frequency evolution
and training resolution in particular a 10% lower testing and using 20% fewer
frequency modes compared to the existing FNO.

2. IFNO reduces training cost as few frequency modes require less parameters,
and low training resolution requires less dimensionality achieving a 30% faster
performance, enabling larger scale simulations.

B FNO
M IFND {Freg)

Murnber of Frequency Modes &

Burgers Darcy NS0 WS5-3D Kolmogaroe

Figure 6: Number of frequency modes K in the converged FNO
and iIFNO models across datasets. We report f{ in the first Fourier
convolution operator. NS denotes Navier-Stokes eguations.

Moving towards a foundational model

Existing neural operator architectures face challenges when
solving Multiphysics problems with coupled PDEs, due to
complex geometries, interactions between physical variables,
and the lack of large amounts of high-resolution training data.

The architecture should not be restricted to a fixed number
of physical variables, allowing it to handle PDEs with
varying numbers of variables.

It should be able to learn and predict different PDE systems,
even when the number of physical variables differs between
the training and target systems.

When the training and target PDE systems have overlapping
physical variables, the architecture should allow for transfer
of learned knowledge between the systems.

Self-Supervised Pre-training

Single Physics System

Coupled Multi-Physics System

@\ s Uy t+6t

Uy t+5t

[S—
[yt > ’ AN
Dt A % Dt+5t
& ¥

dw.t+5t

Additional
variables
dy | ® . e dy. t+5t

Few Shot Supervised Finetuning

Codomain Attention Neural Operator -
Architecture

Permutation Equivariant Neural Operator: This allows CoDA-NO to process vector-valued input functions a =
laq,a,, ...,a4], where each a; represents a different physical variable like velocity, pressure etc. It applies the same
integral or pointwise operator to each component a; sharing weights across variables.

CoDA-NO Layer: This is the core innovation. It extends the self-attention mechanism from standard transformers
to operate on functions instead of finite-dimensional vectors. Specifically, for an input vector-valued function w
[er Wy, ..., Wd]:

1. It tokenizes w along the codomain/channel dimension into separate token functions w; treating each physical
variable w; as a token.

2. Foreach w;, it computes query g; , key k; , and value v; functions using learnable operators Q, K, V.

3. It computes weighted sums of the value functions v; , using weights from dot products between g; and k; in
function space.

4. This gives output token functions o; for each variable.

5. Finally, it concatenates these o0; back into the output vector-valued function o.

CoDA-NO Architecture (Cont’d)

1. Variable Specific Positional Encoding (VSPE): It learns positional encodings e; for each input variable a;,
concatenating e; with a; to obtain extended input functions. Then we just applied a shared point wise
liftting operator to all of these extended input functions.

2. Function Space Normalization: |t extends normalization layers like BatchNorm to operate on functions
instead of vectors.

Lastly, to effectively handle non-uniform complex geometries, we follow the GINO architecture where a
GNO is used as an encoding and decoding module. We note that all of the integral operators are FNO.
Finally, by tokenizing along the codomain and applying self-attention there, CoDA-NO can explicitly model
interactions between different physical variables of multiphysics PDEs within a single model.

0.4 [T . = —

0.7'@, \J — 0_2'_' \ ’ » V'- -
0 0.5 1.0 1.5 0.5 1.0 1.5 3

0.0 M ————) ©

0. 2.0 2.5 0.0 > 1.z
u, at t u, at t + ot

2.0 2.5

Figure 3: Visualization of horizontal velocity u, at and t + d¢ time step.

CoDA-NO - Diagram

Kay functions. g1 =~

[| |
e K .
g CoDa-NO Layers .] %)
9 . ,ﬁ:}; e J 1 CQueryfunctiors, ~SoftMax i
Fe ENDp:r . I-.-?‘-' = g Il | h g e 7] i ") I
' Iﬁ'__l - o — — - Latent
» - it gr_‘:'”" | ":EH i =) Output function
. ﬂ.t‘,_r;‘:-h_! ' ; Latent 1 = Valug functions_,
Input il Unatorm Dutput NPUEFUNCUION pper, W -
FuRCtion Latant Srid Function functions

Figure 2. On the left, we illustrate the architecture of the Codomain Attention Neural Operator. Each physical variable (or co-domain) of
the input function is concatenated with variable specific positional encoding (VSPLE). Each variable, along with the VSPE, is passed
through a GNO layer, which maps from the given non-uniform geometry to a latent regular grid. Then, the output on a uniform grid
15 passed through a series of CoDA-NO layers. Lastly, the output of the stacked CoDA-NO layers 1s mapped onto the domain of the
output geometry for each query point using another GNO layer. On the right, we illustrate the mechanism of codomain attention. At each
CoDA-NO layer, the input function is tokenized codomain-wise, and each token function is passed through the K, €, and V operators to
get key, query, and value functions {k', k°}, {¢',¢" }, and {v", v*} respectively. The output function is calculated via an extension of
the self-attention mechanism to the function space.

Codomain Attention Neural
Operator (Training)

e The objective is to train the model to reconstruct the original input
function from its masked version.

e The input function is masked by setting values of a percentage of mesh
points to zero for some variables, or by completely masking certain
variables.

e The model's encoding component acts as the Encoder, while the decoding
component is the Reconstructor during this phase

e The Reconstructor from the pretraining phase is replaced by a randomly
initialized Predictor module in the decoding component.

e The parameters of the Encoder and variable-specific positional encodings
(VSPEs) are initialized from the pretrained weights.

e |f the fine-tuning (target) PDE introduces new variables not present during
pretraining, additional VSPEs are trained for these new variables to adapt
to the expanded set of variables.

Pre-training on Physical Quantities

VSPE! | —=(T of Navier-Stokes Equations

T"{'imkrﬂ T-Lm
VSPE! | — |— TLy

ru'i.l' Masking| ﬂ
VSPE? |—=p

| : Encoder Reconstructor

'r r.usl:ril
VSPE! | ==

it Adaptation to additional Physical

T Quantities of Elastic Wawve Equation
VSPE? |—h U L4 bt

L TR Uy, t46t
VSPE? |=——s(]} — Pty bt

[l

Pe— d i 5t

4 . i

VSPE — Encoder Predictor dy 11 51

ff:r.,t
VSPE®S —"{1

.1

Figure 3. Test time adaptation to new physical variables. The
model is pre-trained on the Navier-Stokes equation dataset, which
comprises physical variables such as velocities ., 1y, and pres-
sure p. To adapt this pre-trained model on a fluid-solid interaction
dataset containing an additional Elastic wave equation with new
displacement variables o and d,,, it is only necessary to add two
additional VSPEs to the whole pipeline.

Datasets

1. PDEBench features a much wider range of PDEs than existing benchmarks.
Datasets employed in our study encompass diverse PDE types and
parameters like Navier-Stokes equations, diffusion-reaction equations, and
shallow-water equations.

2. Fluid Dynamics Problem (NS): Governed by the Navier-Stokes equation

1. Involves a Newtonian, incompressible fluid impinging on a rigid
cylinder with an attached rigid strap. The physical variables are the
fluid velocity (u) and pressure (p)

3. Fluid-Structure Interaction Problem (NS+EW): Coupled system governed by
both the Navier-Stokes equation for fluid and the Elastic wave equation for
the solid

1. Involves a Newtonian, incompressible fluid interacting with an elastic,
compressible solid object (cylinder with an attached deformable elastic
strap).The physical variables are the fluid velocity (u), pressure (p), and
the solid displacement field (d).

Cylinder

Flexible

Strap

Results

Table 1: Test L2 loss for fluid dynamics (NS) and fluid-solid interaction (NS+EW) datasets with
viscosity Re = 400 and Re = 4000 for different numbers of few-shot training samples.

*Model: CoDA-NO outperforms all baselines
*Pre-training:

Re = 400 Re = 4000
NG+ U)
NS+EW pr_e_tramlng performs best oyerall Mode] Pretrain # Few Shot Training Samples
*NS pre-training also effective, especially for Dataset 5 75 100 5 75 100
fluid dynaml_cs (NS) tasks Evaluation Dataset

*Few-shot learning: NS NS+EW NS NS+EW NS NS+EW NS+EW NS+EW NS+EW
*CoDA-NO shows significant improvement with gno - 0200 0.122 0.047 0053 0022 0043 0717 0292 0.136
limited data (5-25 samples DeepO . 0686 0482 0259 0.198 0.107 0.107 0889 0545 0.259

P
-Performance gap narrows but remains as GNN ; 0,038 0.045 0008 0009 0008 0009 0374 0310 0.132
e size 100 ViT ; 0271 0211 0061 0113 0017 0021 0878 0409 0.164

sample size increases to U-Net) 1333 3579 0565 0842 0141 0203 3256 0563 0292

°V'SCOS'ty/_ReynOIdS number: _ 0.182 0051 0008 0084 0006 0004 0326 0264 0.070
-Consistent performance across Re = 400 and ours NS 0025 0071 0007 0008 0.004 0005 0366 0.161 0.079

Re = 4000 NS+EW 0024 0.040 0006 0005 0.005 0003 0.308 0.143 0.069
*Adapts well to more turbulent flows (Re =
4000)
*Task generalization:
Effectively transfers from fluid dynamics (NS)
to fluid-structure interaction (NS+EW)

Results

*Full CoDA-NO:
*Best performance across all scenarios
*Especially effective with few-shot learning (5-25
samples)
sImpact of Components:
*CoDA-NO without VSPE & Norm: Significant
performance drop
*Adding CoDA-NO alone: Major improvement, especially
for NS+EW
*VSPE: Critical for model convergence with limited data
*Normalization: Essential for effective training
*Pre-training Effects:
*NS+EW pre-training: Best overall performance
*NS pre-training: Effective, especially for NS tasks
*Generalization:
*Full CoDA-NO shows best adaptation from NS to
NS+EW tasks
*Key Takeaway: All components (CoDA-NO, VSPE,
Normalization) are crucial for optimal performance and
generalization

Pretrain

Few Shot Training Samples

CoDA-NO VSPE Norm 3 25 100
Dataset
NS NS+EW NS NS+EW NS NS+EW
X X X X 0.271 0.211 0.061 0.113 0017 0.020
W X X X 0.182 0.051 0.008 0.084 0.006 0.004
W X v NS 0.049 0079 0.009 00132 0004 0009
v X v NSEW 0045 0057 0010 0011 0.008 0.004
v v X NS * * 0.023 * 0.008 0.006
v v X NSEW 0057 0232 0012 0052 0006 0006
W v v NS 0.025 0.071 0.007 0008 0.4 0.005
W v v NSEW 0024 0040 0006 0005 0005 0003

Results

Zero-Shot Super Resolution Performance et PR TE
) . - Model Pretrain Fluid Viscocities
*Task: Fluid-Solid (NS-EW) Interaction Problem ode =1 =10

Dataset p =25
*Setting: Trained on 1317 mesh points, tested on 2193 points

T] U-Net - 0.144 0.267 0.216

Key Findings: Vit - 0.052 0.175 0.046

1.CoDA-NO outperforms all baselines significantly GINO) ”:ﬂ%!g ﬂ:”ﬁ {}_1:'}?1 |

2.Pre-training improves performance: DeepO) 0.113 0.107 0.357

1. NS pre-training slightly better than NS-ES pre-training GNN) 0273 0211 0.247
3.Performance across viscosities (u):

1. Best: u = 5 CoDA-NO NS-ES5 0.041 0.063 0.048

CoDA-NO NS 0.032 0.049 0.035
2. Good:u = 10 ;

3. Challenging: u = 1
4.Baseline comparisons:
1. ViT performs best among baselines
2. U-Net and DeepO struggle most with this task
Conclusion: CoDA-NO demonstrates superior generalization to higher resolution
meshes without specific training.

Results

*Single-Physics PDEs:

*Shallow Water Equations (SWE) : Modd Datasct Prediction Em? - E.::i:mlructiun Error
*CoDA-NO: 0.04072 (12% improvement over FNO) ‘

e : CoDA-NO : 0.04072 0.00460
+Diffusion Equation (DIFF): FNO SWE 0.04631 0.03262
*CoDA-NO: 0.00810 (43% improvement over FNO) c.pa.NO IR 0.00810 0.00041
*Multi-Physics Dataset (NS+DIFF+SWE): FNO 0.01415 0.01894
. -NO: i ' ' CoDA-NO 0.00302 0.00006
CoDA-NO: 0.00302 (slightly higher than FNO's 0.00118) oo NS+DIFF+SWE P P ee

*Reconstruction Error:
*CoDA-NO consistently lower than FNO across all datasets
*Model Size Comparison:

‘CODA'NO: 11 m|”|0n parameters Model Model Parameters
*FNO: 1.9 billion parameters (98% larger) CoDA-NO HM
_ FNO 1.9B
Performance vs. DPOT: DPOTFLT ™
Comparable performance to DPOT on DIFF dataset DPOT-FT-S 30M
*CoDA-NO: 0.0081 vs. DPOT-L-500: 0.0073 DPOT-FI-M 100M
DPOT-FT-L 500M

*Achieved with significantly fewer parameters and training epochs

1.

2.

3.

4,

Overall picture

Superior Performance: Outperforms baselines in few-shot learning and zero-
shot super-resolution tasks

Adaptability: Seamlessly handles varying numbers of physical variables and
complex geometries

Generalization: Effectively transfers knowledge between single and
multiphysics problems

Robustness: Maintains performance across various Reynolds numbers,
including turbulent flows

CoDA-NO demonstrates potential as a versatile foundation model for solving
diverse multiphysics PDEs, opening new avenues for efficient scientific
computing.

Some open problems in Neural Operator

Scaling up is a big challenge

The resolution in the intermediate layers is designer choice, how it should be done?
Neural Operator architectures are still primitive.

What can these architectures bring to CV?

Uncertainty Quantification is essential, but how can it be done in function spaces?
Reinforcement learning and control + Neural Operators = How can it be done?
Unsupervised learning — representation learning in function spaces?

What about meta learning, adversarial robustness, transfer learning etc?

Takeaway: Lots to discover in this field.

I Collaboration

Compler Soiese/ Mctinices

Aciorim Labiores Gempiai ScXial Libbortives

FOMGLONS <
i

" MCUONESY. (7

sl

Sciarialimdes

Demcal LAAM Itmosthing Fonmlohral Meiels
ANIIENS SUTIE

MBOUI) SIHEE.

Germariisl Medels

U

Codebase eura)|Operator

in infinite dimensions

Neural Operator is an open-source library with a permissive license for scientific ML. It provides a unified API for
different neural architectures for operator learning. Our mission is to democratize state-of-the-art algorithms like yours
through a unified codebase.

In particular, we have added a Physics-based Informed Neural Operator (PINO) as an extension of PINNs that
overcomes the critical limitations by incorporating both data and physics losses at varying resolutions. This allows for
better generalization and extrapolation to resolutions beyond the training data and is much more suitable for multi-
scale dynamic PDE systems.

The New codebase for all Neural Operators are present here: neuraloperator/neuraloperator: Learning in infinite
dimension with neural operators

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/neuraloperator

Must watch Resources

https://youtu.be/ j7TbceE9AYA - ICML 2024 Tutorial"Machine Learning on Function spaces — By
Kamyar Azizzadensheli

https://youtu.be/6bl5XZ8k0OzI - Al That Connects the Digital and Physical Worlds | Anima
Anandkumar | TED

https://youtu.be/PpTkY8lgV3c - Tutorial on Neural Operators by Zongyi Li

https://youtu.be/y5EJr40fGOc - ML for Solving PDEs: Neural Operators on Function Spaces by
Anima Anandkumar

ETH Zurich DLSC: Course Introduction — YouTube - Playlist by ETH on scientific computing

https://youtu.be/W8PybgAkéElk - Fourier Neural Operator (FNO) [Physics Informed Machine
Learning] by Steve Brunton

https://youtu.be/_j7bceE9AyA
https://youtu.be/6bl5XZ8kOzI
https://youtu.be/PpTkY8lgV3c
https://youtu.be/y5EJr4ofGOc
https://www.youtube.com/watch?v=y6wHpRzhhkA&list=PLJkYEExhe7rYY5HjpIJbgo-tDZ3bIAqAm
https://youtu.be/W8PybqAk6Ik

Acknowledgements

Thank you to Umaa Rebbapragada for inviting me to speak at JPL.

All this work is mostly done by the team here at Caltech and Nvidia under
Anima Anandkumar.

Special thanks to Zongyi Li, Kamyar Azzizadenesheli (for slides as well), Jean

Kossaifi, Jiawei Zhao, Julius Berner, Ashig Rahman, David Pitt. | thank the rest
of the contributors and the other members of the teams for their help and

contributions.
>

NVIDIA.

Conclusion

Al for science
Ai of Science Future of science
Ai + Science

Two Nobel Prizes this year:)

Any Questions?

References

1. Neural operator: Graph kernel network for partial differential
equations, Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima
Anandkumar

2. Neural operator: Learning maps between function spaces, Nikola
Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar

3. Blog post by Zongyi Li, https://zongyi-
li.github.io/blog/2020/graph-pde/

https://zongyi-li.github.io/blog/2020/graph-pde/
https://zongyi-li.github.io/blog/2020/graph-pde/

	Slide 1: Neural Operators: Machine Learning in Function Spaces
	Slide 2: Rise of Deep Learning
	Slide 3: Real world domain (Function) -> Data (Function)
	Slide 4: Numerical Solvers
	Slide 5: Limitations
	Slide 6: Moving on to learning Functions
	Slide 7: Discretization Agnostic Learning
	Slide 8: Neural Operator (What are they?)
	Slide 9: Discretization-Convergent
	Slide 10: Math of Neural Operators
	Slide 11: From Neural networks to Neural Operators
	Slide 12: Architectures
	Slide 13: Graph Neural Operator (GNO)
	Slide 14: Fourier Neural Operator (FNO)
	Slide 15: Other Architectures
	Slide 16: Zero shot super resolution
	Slide 17: Universal Approximators of Operators
	Slide 18: Big Impact Applications
	Slide 19: Optimization difficulties in FNO
	Slide 20: Incremental FNO
	Slide 21: Moving towards a foundational model
	Slide 22: Codomain Attention Neural Operator - Architecture
	Slide 23: CoDA-NO Architecture (Cont’d)
	Slide 24: CoDA-NO – Diagram
	Slide 25: Codomain Attention Neural Operator (Training)
	Slide 26: Datasets
	Slide 27: Results
	Slide 28: Results
	Slide 29: Results
	Slide 30: Results
	Slide 31: Overall picture
	Slide 32: Some open problems in Neural Operator
	Slide 33: Collaboration
	Slide 34: Codebase
	Slide 35: Must watch Resources
	Slide 36: Acknowledgements
	Slide 37: AI for science Ai of Science Ai + Science Two Nobel Prizes this year:) Any Questions?
	Slide 38: References

