

Pacific Institute for the Mathematical Sciences

Overview

> The convolution theorem provides a method for efficiently computing convolutions using Fast Fourier Transforms (FFTs), with the caveat that the convolution is periodic. For two arrays F and G that have period N the convolution is defined as

$$(f * g)_k = \sum_{p=0}^{N-1} f_p \odot g_{k-p}$$

- Many applications such as nonlinear PDEs require a linear convolution, which can be computed using the convolution theorem, provided that the data is sufficiently padded with zeros so we can avoid aliases.
- Implicit dealiasing provides an alternative to explicit dealiasing: the FFTs are formulated to implicitly take account of the known zero values, avoiding the need for explicit zero padding.
- > To maximize performance, we use hybrid padding: the padding is chosen to be fully implicit, fully explicit, or in between.

Applications

Convolution Neural Networks, Machine Learning, turbulence simulations, Nonlinear PDEs, signal filtering, Physics, Probability Theory usually have arrays of unequal size.

References

Multithreaded Implicitly Dealiased Convolutions, M. Roberts and J. C. Bowman, Journal of Computational Physics 356, 98-114 (2018).

Hybrid Dealiasing Convolutions

Department of Mathematics and Statistical Sciences Robert Joseph, Noel Murasko, John C. Bowman {rjoseph1, murasko, bowman}@ualberta.ca

Algorithm (1 Dimensional)

 ${f_k}_{k=0}^{L_1}$

Hybrid Padding to size M

FFT

......

Algorithm (N Dimensional)

- For each direction we would have 3 parameters namely Λ_N, m_{f_N}, M_N where N denotes the dimension. - Then we call the forward transform (FFT) N-1dimension routine recursively along the Nth axis. We then multiply the two arrays in Fourier space using the Residue matching algorithm and then again call the backward transform N - 1 dimension routing recursively along the Nth axis.
- Finally we use the Mode selection algorithm to return how much of the convolution we want.

Tuning Parameters

Future Work

UNIVERSITY OF ALBERTA

 \succ To find the best Λ_N , m_{f_N} , M_N along the N^{th} axis dimension we use a grid search across the factors of the length of the *f* and *g* array and hence the time complexity would be O(n) where $n = \lfloor q \rfloor$. > We do this independently for each dimension due to the very nature of how a multi-dimensional FFT is calculated and is optimal for any dimension.

Results

We offer unique solutions that expand hybrid dealiasing to issues with uneven input reducing memory and computation time.

Expanded this to multi-convolution (both 1D/2D), applying the convolution to a sequence of data, N arrays rather than just two.

We construct the first hybrid dealiasing solution, which is around 10 times quicker than typical explicit padding approaches.

> 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

> > g

Complete 3D unequal hybrid dealiasing. Port to C++ and include in convolution libraries such as FFTW++; create wrappers for Python and Julia.

Create specialized algorithms for the Hermitian and

real case to save additional memory. Generalize if possible to N dimensions. Scan QR code for contact information.

